Расчет напряженного состояния при растяжении

Расчет напряженного состояния при растяжении thumbnail

Рассмотрим более детально особенности напряженного состояния, возникающего в однородном растянутом стержне.

Рис. 1.18

Определим сначала напряжения в некоторой наклонной площадке, составляющей угол а с плоскостью нормального сечения (рис. 1.18). Полное напряжение на этой площадке, согласно условию однородности напряженного состояния для всех точек площадки, будет одним и тем же. Равнодействующая же внутренних сил в сечении должна быть направлена по оси стержня и равна растягивающей силе т. е.

где — площадь косого сечения, . Таким образом, полное напряжение на наклонной площадке

Раскладывая это напряжение по нормали и по касательной к наклонной площадке (рис. 1.18, б), находим

или

Как видим, для одной и той же точки растянутого стержня значения возникающих в сечении напряжений оказываются различными в зависимости от ориентации секущей площадки. Поэтому, в частности, неточным было бы утверждение, что при растяжении возникают только нормальные напряжения. Это верно только для площадок, нормальных к оси стержня.

Если положить то из выражений (1.10) и (1.11) мы получим напряжения в поперечном сечении стержня, т. е.

При т. е. в продольных сечениях, ста Это значит, что продольные слои растянутого стержня не имеют между собой силового взаимодействия по боковым поверхностям. В этом смысле растяжение стержня можно уподобить растяжению пучка не связанных между собой параллельных нитей.

Касательное напряжение та, обращаясь в нуль в продольных и поперечных сечениях, имеет наибольшее значение на площадках, наклоненных под углом 45° к оси растянутого стержня:

Если из растянутой полосы мы выделим прямоугольник (рис. 1.19, а), то на его гранях АВ и следует приложить напряжения , определяемые выражениями (1.10) и (1.11).

Рис. 1.19

На рис. 1.19, б эти напряжения отмечены сверху штрихом. На гранях и напряжения вычисляют также по формулам (1.10), (1.11), в которых только угол а заменяют углом а Эти напряжения отмечены двумя штрихами. Таким образом, то напряженное состояние, которое показано на рис. 1.19, б, представляет собой обыкновенное растяжение, но изображенное в непривычном для нас ракурсе.

Существенно отметить, что переход от произвольной площадки а к площадке не сказывается на абсолютной величине касательного напряжения та. Действительно,

Следовательно, на двух взаимно перпендикулярных площадках (если отвлечься пока от знаков) касательные напряжения должны быть равными. Это условие является общей особенностью любого напряженного состояния и носит название закона парности касательных напряжений.

Этому закону можно дать наглядное толкование. Если рассмотреть произвольно взятый элемент (см. рис. 1.19, а), то легко заметить, что, независимо от значений нормальных напряжений о и касательные напряжения должны иметь такое значение и такое направление, чтобы моменты их пар взаимно уравновешивались (см. рис. 1.19, б). Для произвольно взятого элемента, имеющего толщину , очевидно, что

Таким образом,

При этом, как видно на рис. 1.19, б, векторы касательных напряжений в двух взаимно перпендикулярных площадках направлены либо оба к общему ребру (ребра А и С), либо от общего ребра

Закон парности касательных напряжений в самом общем виде сложного напряженного состояния будет рассмотрен еще раз в гл. 7.

Теперь обратимся к анализу деформированного состояния растянутого стержня.

Наблюдения показывают, что удлинение стержня в осевом направлении сопровождается уменьшением его поперечных размеров (рис. 1.20). Таким образом, при растяжении возникает не только продольная, но и поперечная деформация стержня:

Рис. 1.20

Экспериментально установлено, что в пределах применимости закона Гука поперечная деформация пропорциональна продольной:

где — безразмерный коэффициент пропорциональности, называемый коэффициентом Пуассона. Коэффициент характеризует свойства материала. Определяют его экспериментальным путем. Для всех металлов числовые значения лежат в пределах . В дальнейшем, в гл. 7, будет показано, что для изотропного материала значение вообще не может превышать 0,5.

Вернемся к рис. 1.19, а. Полоса удлиняется в продольном направлении и сужается в поперечном. Стороны прямоугольника начерченного на поверхности полосы, изменят свою длину, а сам прямоугольник перекосится и превратится в параллелограмм. Углы А и С уменьшатся, а В и — увеличатся. Это изменение прямого угла для заданной ориентации сторон, как нам уже известно, называется угловой деформацией или углом сдвига. Чтобы найти его, мы определим сначала углы, на которые повернутся отрезки АВ и Разность этих углов и даст нам искомый угол сдвига.

Читайте также:  Тест на растяжение тканей

Начнем с отрезка АВ (рис. 1.21). Построим на нем, как на диагонали, вспомогательный прямоугольник стороны которого и ориентированы по продольной оси стержня. Вследствие продольного удлинения точка В переместится вправо и отрезок АВ повернется на угол

Рис. 1.21

В результате поперечного сужения отрезок АВ получит дополнительный угол поворота

Сумма этих углов дает нам искомый угол поворота отрезка АВ:

или

Изменяя угол а на 90°, найдем положение отрезка АВ:

Угловая деформация (угол сдвига) определяется разностью углов поворота отрезков, и, следовательно,

Сопоставляя это выражение с выражением (1.11), выведенным для напряжения та, замечаем, что угол сдвига между плоскостями АВ и АС независимо от а пропорционален касательному

напряжению, т.е.

Это соотношение в случае изотропного материала является единым для всех типов напряженных состояний и носит название закона Гука для сдвига. Опуская индекс а, напишем последнее выражение в виде

где величина называется модулем сдвига, или модулем упругости второго рода:

Модуль измеряется в тех же единицах, что и модуль Е.

Таким образом, если закон Гука для растяжения постулируется при помощи соотношений (1.4) и (1.12), то для сдвига он вытекает из них как следствие.

Источник

Расчет на прочность при растяжении
Расчет напряженного состояния при растяжении
Расчет напряженного состояния при растяжении

2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].

Читайте также:  Упражнения на растяжение мышц спины и шеи

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Читайте также:  Упражнения йоги для растяжения

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Расчет напряженного состояния при растяжении

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник