Закон гука для растяжения и сжатия пружины



Главная 
 Онлайн учебники 
 База репетиторов России 
 Тренажеры по физике 
 Подготовка к ЕГЭ 2017 онлайн

Глава 1. Механика

Силы в природе

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Рисунок 1.12.1.

Деформация растяжения (

x > 0

) и сжатия (

x < 0

). Внешняя сила

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2.

Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Закон гука для растяжения и сжатия пружины

Модель.
Закон Гука





Источник

Сила упругости

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние. 

Рассмотрим простейшие деформации — растяжение и сжатие 

Сила упругости

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Закон Гука

Для малых деформаций x≪ l справедлив закон Гука. 

Закон Гука

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе. 

Fупр=-kx

Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние. 

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε=xl. Напряжением в теле называется отношение σ=-FупрS.  Здесь S — площадь поперечного сечения деформированного тела.  Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению. 

ε=σE.

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E≈2·1011 Нм2, а для резины E≈2·106 Нм2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня. 

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N→, называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения. 

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает. 

Вес тела — это сила, с которой оно действует на опору. 

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр. 

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

Читайте также:  Как помочь при растяжении мышц

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k). 

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Источник

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

Закон гука для растяжения и сжатия пружины

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

ℓ0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

— единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

Закон гука для растяжения и сжатия пружины

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Закон гука для растяжения и сжатия пружины

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Читайте также:  Прочность при растяжении полиамидов мпа

Закон гука для растяжения и сжатия пружины

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Источник

Для проектирования таких механизмов требуется базовое понимание того, что из себя представляют упругость, кручение и сила, поэтому инженерам необходимо знать определение и формулу закона Гука.

Свойства пружины

Пружина — это объект, который может деформироваться под воздействием силы, а после того как сила будет устранена, вернётся к своей первоначальной форме. Пружины бывают самых разных форм и являются неотъемлемой частью практически всех умеренно сложных механических устройств: от шариковых ручек до двигателей гоночных автомобилей.

В самой форме спиральной пружины нет никаких особенностей. «Пружинность», или, точнее, эластичность, является фундаментальным свойством проволоки, из которой изготовлена ​​пружина. Длинная прямая металлическая проволока также обладает способностью «отскакивать» после растяжения или скручивания.

Смотка проволоки в пружину позволяет использовать свойства длинного куска в небольшом пространстве. Это гораздо удобнее для сборки механических устройств.

Реакция металлической проволоки на растяжение (осевая нагрузка) и скручивание (кручение) определяется различными физическими свойствами, и в конструкции конкретной пружины один вид деформации может преобладать над другим.

Кроме того, упругие свойства металлов сильно зависят от микроструктуры их зёрен. Это может быть изменено как напряжением, так и контролируемым процессом нагрева и охлаждения, известным как отжиг.

Если металлическая проволока была сформирована из прямого сечения в катушку, то, вероятно, её необходимо будет повторно отжечь для восстановления первоначальных упругих свойств.

Принципы деформации

Когда сила воздействует на материал, он растягивается или сжимается в ответ. В механике сила, приложенная на единицу площади, является тем, что называется напряжением. Степень растяжения и сжатия, возникающая, когда материал реагирует на напряжение, называется деформацией. Напряжение измеряется отношением разницы в длине к исходной длине в направлении напряжения.

Каждый материал по-разному реагирует на стресс, и детали этой реакции важны для инженеров, выбирающих материалы для своих конструкций и машин, которые должны вести себя предсказуемо при ожидаемых напряжениях.

Для большинства материалов нагрузка, испытываемая при приложении небольшого напряжения, зависит от плотности химических связей. То же самое относится к жёсткости материала, которая напрямую связана с его химической структурой.

Происходящее при снятии напряжения зависит от того, насколько далеко перемещены атомы.

В целом существует два типа деформации:

  1. Упругая. После снятия напряжения материал возвращается к размеру, который был до приложения нагрузки. Деформация обратима, непостоянна.
  2. Пластическая. Напряжение настолько велико, что при снятии нагрузки материал не возвращается к своему предыдущему размеру. Минимальное значение напряжения, вызывающего пластическую деформацию, известно как предел упругости материала.

Любая пружина должна быть спроектирована точно таким образом, чтобы она испытывала только упругую деформацию при установке в машину при нормальной эксплуатации.

Суть закона

Закон назван в честь британского физика XVII века Роберта Гука, который впервые сформулировал его в 1676 году в виде анаграммы на латинском.

Он опубликовал её решение в 1678 году, утверждая, что открыл закон уже в 1660 году.

При изучении пружин и свойств их упругости, имеющих электромагнитную природу, физик отметил, что кривая зависимости напряжения от деформации для многих материалов имеет линейную область.

Вот как формулируется закон Гука: сила упругости, необходимая для растяжения упругого объекта, такого как металлическая пружина, равна или прямо пропорциональна удлинению пружины.

Эта формулировка математически записывается как F = -kx, где обозначения расшифровываются следующим образом:

  1. X — это смещение конца пружины от её положения равновесия.
  2. F — восстанавливающая сила, прилагаемая пружиной к этому концу.
  3. K — константа пропорциональности, известная как пружинная постоянная, которая обычно измеряется в N/m (ньютон метр).

Несколько пружин могут воздействовать на одну и ту же точку. В таком случае закон всё ещё может применяться. Как и с любым другим набором сил, силы многих пружин могут быть объединены в одну.

Когда действует закон Гука, поведение линейно. Если оно показано на графике или рисунке, линия, изображающая силу как функцию смещения, должна показывать прямое изменение. В правой части уравнения есть отрицательный знак, потому что восстанавливающая сила, создаваемая пружиной, находится в направлении, противоположном силе, вызвавшей смещение.

Читайте также:  Средство от боли в спине или растяжений

Всегда важно убедиться, что направление восстанавливающей силы задаётся последовательно при приближении к механическим задачам, связанным с упругостью. Для простых задач часто можно интерпретировать расширение X как одномерный вектор, в этом случае результирующая сила также будет одномерным вектором, а отрицательный знак в законе Гука даст правильное направление силы.

Однако успешность применения принципа зависит от того, при каких условиях он выполняется. Закон Гука является лишь линейным приближением первого порядка к реальному отклику пружин (и других упругих тел) на приложенные силы и имеет границы применимости, работая только в ограниченной системе координат.

Поскольку ни один материал не может быть сжат сильнее определённого минимального размера (или растянут за пределы максимального размера) без некоторой постоянной деформации или изменения состояния, он применяется только до тех пор, пока задействовано ограниченное количество силы или деформации. Фактически многие материалы заметно отклонятся от закона Гука задолго до того, как будут достигнуты эти пределы упругости.

С другой стороны, этот закон является точным приближением для большинства твёрдых тел, пока силы деформации достаточно слабы.

По этой причине он широко используется во всех областях науки (например, в сопромате) и техники, а ещё является основой многих дисциплин, таких как сейсмология, молекулярная механика и акустика.

Это также принцип, стоящий за пружинной шкалой, манометром и колесом баланса механических часов.

Поскольку общие напряжения и деформации могут иметь несколько независимых компонентов, «коэффициент пропорциональности» может больше не быть просто одним действительным числом, а скорее линейной картой (тензором), которая может быть представлена ​​матрицей действительных чисел.

В этом обобщённом виде закон позволяет вывести связь между деформацией и напряжением для сложных объектов, с точки зрения внутренних свойств материалов, из которых они изготовлены. Например, можно сделать вывод, что однородный стержень с равномерным поперечным сечением будет вести себя как простая пружина при растяжении, с жёсткостью K, прямо пропорциональной его площади поперечного сечения и обратно пропорциональной его длине.

Модуль Юнга

Модуль Юнга (также известный как модуль упругости) — это число, которое измеряет сопротивление материала упругой деформации. Оно названо в честь физика XVII века Томаса Юнга. Чем жёстче материал, тем выше его модуль Юнга.

Это значение обычно обозначается символом E и записывается как E = σ/ε, где:

  1. σ (сигма) представляет собой одноосное напряжение, или одноосное усилие на единицу поверхности в паскалях.
  2. ε (эпсилон) является деформацией или пропорциональной деформацией (изменение длины, делённое на исходную длину).

Модуль Юнга можно определить при любом напряжении, но там, где он подчиняется закону Гука, это постоянная величина. Можно непосредственно получить постоянную пружины k из модуля материала, области A, к которой приложена сила (поскольку напряжение зависит от площади), и номинальной длины материала L.

Практическое использование

Модуль Юнга позволяет рассчитать изменение размера стержня из изотропного упругого материала при растягивающих или сжимающих нагрузках. Например, он предсказывает, насколько образец материала растягивается при растяжении или укорачивается при сжатии.

Модуль непосредственно относится к случаям одноосного напряжения, то есть растягивающего или сжимающего напряжения в одном направлении и отсутствия напряжения в других направлениях.

Он также используется, чтобы найти отклонение, которое будет появляться в статически определённом луче, когда нагрузка приложена в точке между опорами луча. Другие вычисления обычно требуют использования одного дополнительного упругого свойства, такого как модуль сдвига, модуль объёма или коэффициент Пуассона. Любые два из этих параметров достаточны для полного описания упругости в изотропном материале.

Виды материалов

Сталь, углеродное волокно и стекло среди прочих обычно считаются линейными материалами, в то время как другие материалы, такие как резина и грунты, являются нелинейными. Однако это не абсолютная классификация: если к нелинейному материалу применяется небольшое напряжение, отклик будет линейным. Например, поскольку линейная теория предполагает обратимость, было бы абсурдно использовать её для описания разрушения стального моста под большой нагрузкой.

Модуль не всегда одинаков во всех ориентациях материала. Большинство металлов и керамики, наряду со многими другими материалами, являются изотропными, и их механические свойства одинаковы во всех ориентациях. Тем не менее металлы и керамика могут быть обработаны определёнными примесями, чтобы сделать их структуры зерна направленными.

Эти материалы затем становятся анизотропными, и модуль Юнга будет меняться в зависимости от направления вектора силы. Анизотропия также наблюдается во многих композитах. Например, углеродное волокно имеет гораздо более высокий модуль Юнга, когда сила нагружена параллельно волокнам (вдоль зерна). Другие такие материалы включают дерево и железобетон. Инженеры могут использовать это явление при создании конструкций.

Поскольку производители пружинных весов ожидают, что их продукт будет использоваться вертикально (например, рыбаком, измеряющим массу своей добычи), шкала откалибрована для учёта массы пружины и крючка. Это даст неверный абсолютный результат, если использовать его для измерения горизонтальной силы.

Тем не менее закон Гука говорит, что существует линейная зависимость между силой и растяжением. Из-за этого всё ещё можно рассчитывать на шкалу относительных измерений при горизонтальном использовании. Некоторые пружинные весы имеют регулировочный винт, который позволяет калибровать нулевую точку, устраняя эту проблему.

Источник