Условный предел ползучести при растяжении

УСЛОВНЫЕ
ОБОЗНАЧЕНИЯ



а


температуропроводность


B

— магнитная индукция


B
max — максимальная индукция
для данного цикла намагничивания


B
r

остаточная магнитная индукция


B
s

магнитная индукция насыщения


с

— удельная теплоемкость


— углеродный эквивалент


E

— модуль нормальной упругости


f

— стрела прогиба, частота


G

— модуль сдвига, электропроводность


H

— микротвердость,
напряженность магнитного поля


Hc

— коэрцитивная сила

HB
— твердость по Бринеллю

HRA,
HRB,
HRCЭ — твердость по Роквеллу, соответственно шкалы А, В, С

HSh
— твердость по Шору

HV
— твердость по
Виккерсу


G
Ic
— критическая
интенсивность освобождения энергии деформации при максимальном стеснении
пластической деформации


J
Ic
— критическое значение
—интеграла при максимальном стеснении пластических деформаций и разрушении
нормальным отрывом


K
Ic
— критический коэффициент
интенсивности напряжений (вязкость разрушения)


K
c
— условный критический
коэффициент интенсивности напряжений для образца данной толщины или диаметра


K
f
— коэффициент
выносливости


K
Q
— расчетное
значение коэффициент интенсивности напряжений


K
σ
— коэффициент
концентрации динамических напряжений

KC
— ударная вязкость (образцов без надреза)

KCT
— ударная вязкость (образец с предварительно созданной
трещиной)

KCU
— ударная вязкость (образец с
U-образным надрезом)

KCV
— ударная вязкость (образец с
V-образным надрезом)

KV
— работа удара


M
д — температура начала
мартенситного превращения при пластическом деформировании


М
к — температура конца мартенситного превращения
при охлаждении


М
н — температура начала мартенситного превращения
при охлаждении


Q

— теплота


R

— электрическое
сопротивление


S
э — степень эвтектичности


t

— время


T

— температура


T
c
— точка Кюри


T
50 — температурный порог
хрупкости


Ra

— среднее
арифметическое отклонение профиля


Rz


высота неровностей профиля по десяти точкам

α — температурный
коэффициент линейного расширения


l
0 — начальная расчетная
длина образца


l


длина образца после разрыва

δ — относительное
удлинение при разрыве

δц — циклическая вязкость

δс — раскрытие вершины
трещины при максимальной нагрузке

ε — деформация, линейная
усадка

η — вязкость динамическая

λ — теплопроводность

λs
— магнитоскрипция при насыщении

μ — магнитная проницаемость,
коэффициент Пуассона (коэффициент поперечного сжатия)

ν — кинематическая
вязкость

ρ — удельное электросопротивление


F

— минимальная площадь
поперечного сечения рабочей части образца после его разрыва


F
0 — начальная площадь
поперечного сечения рабочей части образца

ψ — относительное
поперечное сужение

σ — напряжение

σ0 — начальное напряжение

σв — временное сопротивление при растяжении

σвк — временное
сопротивление образца с концентратом напряжений (с надрезом)

σт — предел текучести
физический

σ0,2 — предел текучести
условный

σ0,2сж — предел текучести
условный при сжатии

σ0,001, σ0,005,
σ0,05 — предел упругости
условный с допуском на остаточную деформацию соответственно 0,001; 0,005; 0,05
%

σсж — предел прочности при
сжатии

σизг — предел прочности при
изгибе

σ–1 — предел выносливости
при знакопеременном изгибе с симметричным циклом
нагружения

 — предел выносливости при знакопеременном
изгибе с симметричным циклом нагружения

σ–1р — предел выносливости
при растяжении — сжатии


предел длительной прочности соответственно для базы испытаний 10, 100 и
1000 ч при температуре
Т

— предел ползучести при
температуре Т, создающий остаточную
деформацию 1 % за 1000 ч

— предел ползучести при
температуре Т, характеризующийся
скоростью деформации

τ — касательное напряжение

τв — предел прочности на
срезе

τ–1 — предел выносливости
при знакопеременном кручении


n

— коэффициент запаса


n
т — коэффициент запаса по
пределу текучести


n
в — коэффициент запаса по
временному сопротивлению


n
д — коэффициент запаса по пределу
длительной прочности


n
п — коэффициент запаса по
пределу ползучести

Источник

Механические свойства характеризуют способность матери­ала сопротивляться внешним механическим воздействиям. К основным механическим свойствам относятся прочность, пла­стичность, твердость, ударная вязкость и др.

Основные характеристики механических свойств сплавов цветных металлов:

Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.

По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления — на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения — на холоднодеформированные и термически обработанные (термоупрочненные).

Сталь по назначению подразделяется: на сталь общего назначения — углеродистая горячекатаная обыкновенного качества и сталь разных назначений — углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.

Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.

Предел пропорциональности σпц — напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).

Предел упругости σуп — напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0,001; σ0,01 и т. д.

Предел текучести σт для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ0,2 — напряжение, при котором остаточное удлинение образца достигает 0,2%.

Временное сопротивление (предел прочности) σв — напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это характеристика своеобразной потери устойчивости при растяжении, т. е. характеристика сопротивления значительным пластическим деформациям.

Относительное удлинение при разрыве δ — отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (lрасч=10d) – δ10; для короткого образца (lрасч=5d) – δ5.

Относительное сужение при разрыве ψ — отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.

Читайте также:  Таблетки при растяжении спины

Условный предел текучести при изгибе σт.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при изгибе σв.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.

Условный предел текучести при кручении τ0,2, τт — касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при кручении τв — касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Твердость по Бринеллю НВ — твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σв ≈ 0,36 НВ.

Твердость по Роквеллу HRC, HRB — твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.

Твердость по Виккерсу HV — твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.

Предел ползучести (условный) — длительно действующее напряжение, при котором скорость или деформация ползучести за определенный промежуток Бремени при данной температуре не превышает величины, установленной техническими условиями.

Предел длительной прочности — напряжение, вызывающее разрушение образца после заданного срока его непрерывного действия при определенной температуре.

Предел выносливости — наибольшее периодически изменяющееся напряжение, которое может выдержать материал без разрушения при большом числе циклов, заданном техническими условиями (например, 106; 107; 108). Обозначается при симметричном цикле σ-1 (изгиб), σ-1p (растяжение-сжатие), τ-1 (кручение), при пульсирующем цикле (напряжения меняются от нуля до максимума) соответственно σ0, σ0p и τ0.

Ударная вязкость ak — работа, затраченная на разрушение образца при ударном изгибе, отнесенная к рабочему поперечному сечению образца.

Упругое последействие: прямое — постепенное увеличение деформации после быстрого прекращения роста нагрузки; обратное — сохранение или медленное уменьшение деформации после быстрого снятия нагрузки или остановки разгрузки.

Наклеп — упрочнение металла, происходящее благодаря пластической деформации при процессах холодной обработки (холодной прокатке, вытяжке, волочении).

Старение (механическое) — самопроизвольное длительное изменение механических свойств стали после наклепа, вызванное фазовыми превращениями. Различают естественное старение, протекающее при комнатной температуре, и искусственное старение — при повышенных температурах.

Разрушение стали возможно вязкое (пластичное) — от сдвига, хрупкое — от отрыва. В обоих случаях разрушение состоит в нарушении целостности, в разрыве. Нарушение сплошности может возникнуть при условии накопления энергии, отвечающей величине поверхностной энергии на поверхностях нарушения целостности, и в соответствии с этим расстояние между атомами должно достичь критических величин, при которых происходит нарушение связи между ними.

Работа разрушения — величина всей площади диаграммы растяжения образца в координатах Р-∆l; упругая работа — площадь упругой части той же диаграммы; удельная работа — работа, приходящаяся на единицу объема рабочей части образца и соответствующая площади диаграммы растяжения в координатах σ-ε.

Удельный вес в расчетах принимают равным для стали 7,85, для чугуна 7,2; удельный вес стали с содержанием 0,1% С — 7,06 (в жидком состоянии).

Модуль упругости E стали и другие упругие константы практически не зависят от величины зерна, структуры, соотношений между объемами феррита и перлита, от содержания углерода и других легирующих добавок.

Модуль упругости для прокатной стали, литья, горячекатаной арматуры из сталей марок Ст.5 и Ст.3 Е=2,1·106 кГ/см2; для сталей 30ХГ2С и 25Г2С E=2·106 кГ/см2. Для холоднотянутой круглой и периодического профиля проволоки, а также для холодно-сплющенной арматуры E=1,8·106 кГ/см2.

Для пучков и прядей высокопрочной проволоки (с параллельным расположением проволок) Е=2·106 кГ/см2; для канатов стальных спиральных и канатов (тросов) с металлическим сердечником Е=1,5·104 кГ/см2; для тросов с органическим сердечником E=1,3·106 кГ/см2.

Для отливок из серого чугуна марок СЧ28-48, СЧ24-44, СЧ21-40 и СЧ18-36 E=1·106 кГ/см2.

Модуль сдвига для прокатной стали G=8,4·106 кГ/см2.

Коэффициент Пуассона (коэффициент поперечной деформации) μ=0,3.

Методы определения механических свойств металлов разделяют на:

— статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

— динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);

— циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

1. Испытание на растяжение

При испытании на растяжение определяют предел прочности (σв), предел текучести (σт), относительное удлинение (δ) и относительное сужение (ψ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.

Предел прочности (σв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).

Источник

Условный предел ползучести при растяжении

Стандартные
испытания прочностных и пластических свойств металлов

Механические
испытания в зависимости от характера действия
нагрузки во времени могут быть:

статические,
при которых нагружение производится медленно и
нагрузка возрастает плавно от нуля до некоторой максимальной

величины или
остается постоянной длительное время при малой
скорости деформации;

динамические,
при которых нагрузка на образец возрастает мгновенно
при большой скорости деформации;

—  

повторно-переменные (или циклические), усталостные,
при которых
изменяются величина и направление действия нагрузки. По результатам
испытаний определяют число циклов до разрушения при разных значениях напряжений
или то предельное напряжение, которое образец выдерживает без разрушения в
течение опреленного
числа циклов нагружения.

Читайте также:  Растяжение с учетом собственного веса

Кроме того,
проводят испытания на
ползучесть и
длительную прочность
при повышенных температурах с целью определения жаропрочности металла или
сплава.

При
статических, динамических и усталостных испытаниях, а также
при испытаниях на твердость и жаропрочность определяют
стандартные механические свойства металлов и сплавов: прочностные характеристики
— предел пропорциональности, продел упругости, предел текучести, временное
сопротивление,
пластические
характеристики — относительное удлинение и относительное сужение, а также
твердость, ударную вязкость, предел
выносливости, предел ползучести или предел длительной прочности.

Испытание на растяжение

При испытании на растяжение, согласно ГОСТ
1497, определяют сопротивление металла малым пластическим деформациям,
характеризующееся пределом пропорциональности σпц, пределам упругости
σу и пределом текучести σт (или σ0,2),
а также сопротивление значительным пластическим деформациям, которое выра жают
временным сопротивлением σв.

При растяжении
определяют и пластичность металла, то есть величину
пластической деформации до разрушения, которая может
быть оценена относительным удлинением образца

δ
и его
относительным
сужением ψ (после разрыва образца).

Для испытания
на растяжение используют стандартные образцы
(см. ниже). Машина для испытаний снабжена устройством, записывающим
диаграмму растяжения.

Диаграмма
растяжения показывает зависимость между растягивающей
нагрузкой, действующей на образец, и его деформацией.
На
диаграмме по оси ординат записывают нагрузку

Р,
а по оси абсцисс —
абсолютное удлинение образца Δl
(Δl =



lо, где lх
и lо — текущая
(в данный момент времени) и начальная длины образца) — Рис.
1

 Условный предел ползучести при растяжении

Рис. 1. Схема
диаграммы растяжения: изменение удлинения образца в зависимости от нагрузки

Кривая
изменения абсолютного удлинения Δl
в зависимости
от
прилагаемой нагрузки

Р
при растяжении состоит из прямолинейного 
участка
ОА
и криволинейного

АВ,
отвечающего переходу в область
пластических (остаточных) деформаций и характеризуемой постепенным уменьшением
тангенса угла наклона кривой к оси
абсцисс (см. Рис.
1).

Пластической
называют деформацию, остающуюся после снятия
нагрузки

(кроме
того, наблюдается обратимая пластическая деформация,
которая,
как и упругая, исчезает после снятия нагрузки).
Величина остаточной деформации в момент раз
ру­шения (удлинение, сужение) служит мерой пластичности материала.
Если величина пластической деформации до разрушении мала,
то материал называют хрупким. Пластическая деформация
предшествует любому виду разрушения (вязкому или квазихрупкому),
но при квазихрупком разрушении она весьма мала, локализована
в микро- и субмикрообъемах и не выявляется при обычных
методах измерения макродеформации. В этом последнем
случае
необходимо изыскание такиx
условий
испытания (скорости нагружения,температуры испыта­нии и т. п.), при которых
можно было
бы выявить пластичность материала.

Для
возможности сравнения результатов
испытаний различных но размерам образцов целесооб­разно установить связь между
удельными и относительными ве­личинами, т. е. между условным напряжением

σ,
равным

P/F0,
где

P

растягивающая нагрузка (сила),
F0

плошадь поперечного се­чения образца до испытания, и относительным удлинением

δ, равным Δl/I0,
где Δl
— абсолютное уд- шпение образца;

I0
— длина образца до испытания. Так как значе­нии

Р
и Δl
делятся
на постоянные для данных условий испытания величины,
то вид диаграммы, приведенной на Рис.
1, не меняется
(отличается только масштабом) при переходе от координат

P
– Δl
 к
координатам
σ

δ.

Напряжения
ниже точки

А
практически не вызывают измери­мой остаточной деформации и относительно этой
точки могут быть
установлены (с определенным допуском на точность измеря­емых деформаций) предел
упругости
σу,
а также предел пропорци­ональности σпц.
Здесь и далее напряжения получаются делением соответствующей нагрузки на

F0

плошадь поперечного сечения образца до испытания.

Предел
упругости
σу
— условное напряжение, соответствующее появлению остаточных деформаций
определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на
остаточную деформа­цию указывается в индексе при σу.

Предел
пропорциональности
σпц
— условное напряжение, соответствущее
отклонениям от линейного хода кривой деформации (от
закона Гука), задаваемым определенным допуском (например, увеличением тангенса
угла наклона кривой деформации к оси на­пряжения на 25 или 50% при переходе от
прямолинейного участка к криволинейному).

Следует
отметить, что для реальных
поликристоллических металлов
определение
σу
и σпц
представляет значительные методические
трудности, так как предусматривает измерение очень малых

деформаций.
Поэтому на практике чаще обращаются к такой характеристике,
как условный предел текучести.

Условный
предел текучести
— это условное напряжение, при котором
остаточная деформация достигает определенной величина (обычно

0,2%
от рабочей длины образца; тогда условный
предел текучести
обозначают как
σ0,2).
Величину
σ0,2

определяют,
правило, для материалов, у которых на диаграмме отсутвует
площадка или зуб текучести.

В тех случаях,
когда диаграмма растяжения имеет площадку текучести
(Рис.
2,

а),
измеряют
физический
предел текучести
σт,
условное напряжение, соответствующее наименьшей нагрузке
площадки текучести, когда деформация образца происходит
увеличения нагрузки. Иногда распространение деформации по
длине образцов из пластичных материалов при напряжениях, отвечающих
площадке текучести, носит волнообразный характер:
вначале образуется местное утонение сечения, затем это

утононение
переходит на соседний объем материала и этот процесс разшнми ся
до тех пор, пока в результате распространения такой волны

не возникает
общее равномерное удлинение, отвечающее площадке
текучести. Когда имеется зуб текучести (Рис.
2,

б),
вводят
понятия
о верхнем σвт
и нижнем σнт
пределах текучести.

Условный предел ползучести при растяженииУсловный предел ползучести при растяжении

Рис. 2. Схемы
диаграмм растяжения металлов, дающих площадку (а) зуб
(б)
текучести

Если при
испытании образцов, например на растяжение, не

возникает локализованной деформации (не образуется шейки

местное сужение поперечного сечения), то образец из хрупких металлов
разрушается при какой-то максимальной нагрузке, отвечающей точке

В
на Рис.
1. Деление этой нагрузки на площадь начального поперечного сечения дает
разрушающее напряжение, называемое

временным
сопротивлением
σb
(это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом).
В тех случаях, когда окончание растяжения сопровождается
местным утонением
образца (образованием шейки), диаграмма
растяжения имеет вид, изображенный на Рис.
2, т. е. нагрузка
в момент разрыва пластичного металла и напряжение, отнесенное
к исходному сечению (в точке
D),
могут
быть меньше, чем напряжение в какой-то предыдущий момент растяжения. Но и и этом
случае временное сопротивление определяется применительно
к точке

Читайте также:  Упражнения для растяжения пальцев рук

В,
т. е. относительно максимальной нагрузки, момент достижения которой практически
совпадает с началом образования шейки в образце из пластичного материала. Появление
шейки определяет переход от равномерной деформации всей  рабочей части
образца к сосредоточенной деформации в определенном сечении.

При переходе в
область пластических деформаций (правее точки
Ана диаграмме
Рис.
1) изменения поперечного сечения образца
становятся уже значительными и отнесение нагрузки к исходному
(до деформации) сечению
F0
дает лишь условные напряжения.
Если учитывать изменение сечения при деформации и относить
нагрузку не к исходному сечению, а к сечению в каждый дан­ный момент деформации

Fx,
то
получают

истинные
напряжения.
Эти последние,
естественно, отличаются от условных напряжений и тем
больше, чем пластичнее материал (чем сильнее изменяется сечение
в ходе деформации относительно исходного). Соответственно
изменяется вид диаграммы растяжения, которая схематично
показана на Рис.
3. В случае хрупких материалов (чугун, литые алюминиевые
сплавы и др.) различие между истинными и услов­ными напряжениями может быть
небольшим.

По

диаграмме
растяжения, как было отмечено выше, можно судить
и о пластичности металла, которая характеризуется относительным
удлинением после разрыва

δ
и относительным сужением
площади
сечения у образца.

Под

относительным
удлинением

δ понимают отношение абсолютного
удлинения образца после разрыва Δl
= lк — lо (где lк — конечная
длина образца) к его начальной расчетной длине
lо,
выри женное в процентах, т. е.

δ
=  (lк
— lо)*100%/lо

В случае
испытания «коротких» (пятикратных) образцов (см.
ниже)
относительное удлинение обозначают

δ5,
в случае

«длинных»
(десятикратных) –
δ10.

Относительное
сужение после разрыва

ψ

представляет собой
oтношение
уменьшения площади поперечного сечения разорванного
образца
ΔF=

F0

FK
(где

FK

минимальная площадь поперечного сечения образца после его разрыва) к
первоначальной площади
поперечного сечения

Fo,
выраженное в процентах, т. е.


Ψ
= (
F0

FK)*100%/
F0

При расчете
режимов обжатий в процессах обработки меча им» давлением чаще всего используют
показатель
δ.

Тангенс угла
наклона прямой

ОА
к оси абсцисс (см. Рис.
1)
характеризует

модуль
упругости материала

Е
= σ
/
δ

(где
δ

— относительная
деформация, равная Δl/l0).
Модуль упругости E определяет
жесткость материала:
интенсивность увеличения напряжения
по мере увеличении упругой деформации. Физический
смысл

Е
сводится к тому, что он
характеризует сопротивляемость
металла упругой деформации.
Модуль упругости
практически не зависит от структуры
металла и определяется
силами межатомной связи.
Все другие механические свойства
являются структурно чувствительными
и изменяются в зависимости
от структуры в широких
пределах.

 Условный предел ползучести при растяжении

Рис. 3. Условное изображение диаграммы растяжения (сплошная линия) и диаграммы
истинных напряжений (штриховая линия)

Следует
отметить, что закон пропорциональности между на­пряжением и деформацией является
справедливым лишь в первом приближении. При точных измерениях даже при небольших
на­пряжениях в упругой области наблюдаются отклонения от закона
пропорциональности. Это явление называют
неупругостъю.

Оно
проявляется в том, что деформация, оставаясь обратимой, отстает
по фазе
от действующего напряжения. В связи с этим при нагрузке-разгрузке
на диаграмме растяжения вместо прямой линии получается петля гистерезиса, так
как линии нагрузки и разгрузки не
совпадают между собой.

Механические
свойства металлов в испытаниях на растяжение определяют, используя стандартные
образцы, общий вид которых показан
на Рис.
4.

Необходимо
строго соблюдать определенные соотношения между
начальной расчетной длиной образца l0 и начальной площа­дью
поперечного сечения в рабочей части образца

F0.
Используют образцы двух видов: цилиндрические и плоские. Оба вида образ­ном для
испытания на растяжение применяют с начальной расчет­ной длиной lо = 5,65√F0
или lо = 11,3√F0 диаметром

do
=
3…25 мм или
толщиной

ао
= 0,5. ..25 мм и шириной
b0
= 20…30 мм. При ном образцы с расчетной длиной lо = 5, √F0
именуются «корот­кими», а образцы с lо = 11,3 √F0 —
«длинными», причем примене­ние первых предпочтительнее. Литые образцы и образцы
из хруп­ких металлов допускается изготавливать с начальной расчетной длиной lо =
2,82√F0.

В случае
цилиндрических образцов в качестве основных приме­няют образцы с диаметром

do
=

10 мм
и начальной расчетной дли­ной
l0
=

5do

(короткие) и lо =
10d0
(длинные); в первом случае по­ручаемое значение относительного удлинения после
разрыва обозначают

δ5, во втором

δ10.

Условный предел ползучести при растяжении

Рис. 4. Общий
вид стандартных образцов для испытания на растяжение:

а -цилиндрический
образец;
б —
плоский

Испытание на сжатие

Испытание на
сжатие обычно применяют для определения механических
свойств хрупких материалов. Цилиндрические образцы
диаметром 10…25 мм и высотой, равной диаметру, подвергают
сжатию, фиксируя при этом упругие и остаточные деформации Торцовые поверхности
образцов должны быть отшлифованы, плоскопараллельными
и перпендикулярными к оси
образца. Большое
влияние на результаты испытания оказывает трение на торцах об
разцов. Для уменьшения трения применяют специальные прокладки (свинцовые) или
смазку торцов.

Испытание на
сжатие производят на тех же машинах, что и ж пытание на растяжение, с
использованием приспособлений (реверсов)
для превращения растягивающей нагрузки в сжимающую.
При испытании на сжатие получают диаграмму сжатия (Рис.
5), по
которой определяют основные механические характеристики испытуемого
материала. В процессе сжатия образца из пластичного
металла при напряжении ниже предела текучести металл ведет так же, как
и при растяжении. После достижения предела текучести
образец пластически деформируется, принимая бочкообразную
форму.
При смазке торцов или наличиимягких
прокладок на торцах
деформация образца по высоте получается более равномерной.

При испытании
на сжатие пластичных металлов (см. рис.
5 кривые

2
и

3)
обычно определяют
пределы пропорциональности
и текучести как при испытании на растяжений,
а степень осадки (относительную
деформацию) находят
из
соотношения:


ε
= (h0-h1)*100%/h0,

где hо и

h1

высоты образца

до

и после
осадки.

Условный предел ползучести при растяжении

Рис. 5.
Сравнительные схемы диаграмм сжатия различных металлов:

1 —
чугун;
2
— медь;
3 —

сталь

В случае
испытания на сжатие хрупких металлов (см., например, Рис.
5, кривая
1) достижение
в точке

В
напряжения σв сопровождается разрушением образца. Разрушение
образца обычно происходит под углом 45° к линии действия сжимающей силы.

Источник