Растяжение стали и чугуна

Растяжение стали и чугуна thumbnail

Графитные пластинки нарушают связность металлической матрицы в чугуне. Они ослабляют поперечное сечение детали или образца (потому что графит способен выдерживать только сжимающие, но не растягивающие нагрузки) и способствуют локальной концентрации напряжений при растягивающей нагрузке. В силу этого необходимого обстоятельства чугун, несмотря на большее содержание углерода способен выдерживать меньшую растягивающую нагрузку, чем сталь.

10. Как работает чугун под сжимающей нагрузкой?

Под сжимающей нагрузкой чугун ведет себя лучше, так как графитовые пластинки в поперечном сечении образца воспринимают на себя соответствующую часть напряжения сжатия.

Охарактеризуйте условия образования графита в чугунах?

Описывая диаграмму железо – углерод (рис.1), следует отметить, что ее часто изображают двумя типами линий, причем  пунтирные линии отражают поведение так называемой стабильной системы «железо-графит», а сплошные – поведение метастабильной системы «железо-цементит». Для сталей практическое значение имеет только вторая система, для чугунов – и первая, и вторая. Для образования графита из жидкой фазы или аустенита необходимо очень сильное развитие диффузионных процессов: диффузия атомов железа от растущего кристалла графита и приток атомов углерода из жидкости или аустенита к растущему кристаллу графита. Этому способствует медленное охлаждение отливок. и мельчайшие частицы графита, которые  являются готовыми центрами графитизации.

11. Какой процесс называют модифицированием? какова его цель?

Зная основные положения теории кристаллизации, можно вмешиваться в процессы структурообразования чугуна. В частности, этим пользуются при модифицировании чугуна, когда в жидкий металл вводятся затравки, служащими дополнительными центрами кристаллизации.

Что способствует повышению прочности чугунов?

Чтобы улучшить прочность чугуна, следует либо воздействовать на его металлическую матрицу, либо добиваться того, чтобы графитные включения присутствовали в нем в виде шариков, а не пластинок, Оба эти способа можно использовать одновременно.                                                                         

13. Охарактеризуйте высокопрочный чугун?

Чугун с шаровидным (сфероидальным, глобулярным) графитом (рис.2,в) представляет собой современный конструкционный материал, в котором сочетаются важные достоинства чугуна и стали: с одной стороны, он имеет хорошие литейные свойства, а с другой – его прочность на растяжение достигает примерно такого же уровня, как у стали. То же количество шаровидного графита занимает гораздо меньшую площадь в поперечном сечении, чем пластинчатого; кроме того, опасность концентрации напряжений на таком графите значительно уменьшается.

 14. Как же добиться, чтобы графит в чугуне выделялся в виде шариков, а не пластинок?

Для этого расплавленный чугун обрабатывают (модифицируют) церием или магнием. В результате условия на границах раздела между расплавом и выпадающим из него при охлаждении графитом изменяется таким образом, что графитные включения приобретают округлую форму.

15. Назовите факторы, способствующие графитизации.

Как и углеродистая сталь, нелегированный чугун содержит кремний и марганец. Кремний способствует выделению графита, поэтому в чугуне содержание последнего составляет 2-3%.. Но выделение графита (графитизация) в чугуне существенно зависит и от условия затвердевания. При быстром затвердевании образуется преимущественно цементит, при медленном -–графит, Технолог –литейщик должен тщательно учитывать это обстоятельство, потому что стенки отливки часто имеют разную толщину и поэтому в них создаются разные условия затвердевания. В песчаных формах тепло отводится медленнее, чем в металлических (кокилях); соответственно и условия затвердевания в этих случаях различны

16. Назовите факторы, тормозящие процесс графитизации.

Марганец оказывает обратное действие: чугун, в котором много марганца, затвердевает белым, т.е. углерод в нем связан в виде цементита (термин «белый» и «серый» характеризуют внешний вид поверхности излома – графит придает излому серый цвет).

17. От каких факторов зависит текучесть расплавленного чугуна?

Текучесть расплавленного чугуна в большой степени зависит от содержания в нем фосфора и серы. Фосфор делает расплав более текучим, и тогда чугун хорошо заполняет внутренность формы, включая ее мелкие изгибы. Поэтому для художественного литья чаще всего используют чугун с повышенным содержанием фосфора. Наличие серы в чугуне, напротив, нежелательно, поскольку она не только увеличивает вязкость расплавленного чугуна, но и ухудшает свойства отливок. Правда, чугун не так чувствителен к сере, как сталь, потому что в нем всегда имеется достаточно марганца, связывающего серу.

18.Сравните свойства чугунов и сталей.

Важными преимуществами чугуна по сравнению со сталью является его относительно низкая температура плавления (приблизительно на 100ºС ниже, чем у стали), превосходные литейные качества, а также некоторые специфические эксплуатационные свойства. Среди последних следует отметить лучшую, чем у углеродистых сталей, стойкость к износу и коррозии, но прежде всего способность демпфировать (т.е. ослаблять) механические колебания. По этой причине чугун широко используется для изготовления станин, стоек и несущих конструкций вращающихся машин, которые должны работать без вибрации.

Источник

14Ноя

  • By: Семантика

  • Без рубрики

  • Comment: 0

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

КлассВременное сопротивление, Н/мм2
265430
295430
315450
325450
345490
355490
375510
390510
440590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Источник

Лабораторная работа № 2

Цель работы – изучить поведение различных материалов и определить их механические характеристики при статическом сжатии.

Основные сведения

Испытания материалов на сжатие проводят на специальных прессах или универсальных испытательных машинах по специальным методикам: для стали и чугуна используется ГОСТ 25.503-80, бетона — ГОСТ 10.180-90, древесины поперек волокон ГОСТ 16483.11-72, древесины вдоль волокон ГОСТ 16483.10-73.

Параметры образцов, видео и результаты испытаний на сжатие:

  • стали
  • чугуна
  • дерева вдоль волокон
  • дерева поперек волокон
  • бетона (цементного образца)

Образцы материалов для испытания на сжатие изготовляются в виде цилиндров высотой h и диаметром d . Для чугуна, например, рекомендуется диаметр от 10 до 25 мм. Отношение h/d должно быть в пределах от 1 до 2. При значении h/d >2 сказывается влияние продольного изгиба. При значении h/d<1 в большей степени сказывается влияние сил трения, возникающих между торцами образца и опорными плитами машины.

Силы трения тормозят развитие деформации у торцов образца, чем и объясняется его бочкообразная форма в результате испытаний. Одним из способов уменьшения сил трения является смазывание торцов образца графитом, графитовой смазкой или парафином.

Образцы из искусственного камня (цементного или иного раствора) изготавливаются в виде кубиков или цилиндров.

Деревянные образцы изготавливают в виде прямоугольной призмы с основанием 20 х 20 мм и высотой вдоль волокон 30 мм или кубиков со стороной 20 мм и более.

Пластичные материалы (мягкая сталь, медь и др.) одинаково хорошо работают на растяжение и сжатие, поэтому испытание на сжатие является дополнением к испытанию этих материалов на растяжение.

Для пластичных материалов модуль упругости Е, предел упругости и предел текучести при сжатии примерно те же, что и при растяжении. При сжатии пластичных материалов сила постоянно возрастает (кривая I рис. 2.1), при этом величину напряжений, соответствующих разрушающей силе, определить невозможно, так как образец не разрушается, а превращается в диск (рис. 2.2,а).

Характеристики, аналогичные относительному удлинению и относительному сужению при разрыве, при испытании на сжатие также получить невозможно.

Испытанию на сжатие подвергают главным образом хрупкие материалы, которые, как правило, лучше сопротивляются сжатию, чем растяжению, и применяются для изготовления элементов, работающих на сжатие. Для их расчета на прочность необходимо знать характеристики материалов, получаемые при испытании на сжатие.

На рис. 2.1 кривая 2 показывает диаграмму сжатия чугуна, из которой видно, что закон Гука выполняется лишь приближенно в начальной стадии нагружения.

Верхняя точка диаграммы соответствует разрушающей нагрузке Fmax, определив которую, вычисляют предел прочности материала на сжатие σспч=Fmax/A

Диаграммы сжатия образцов из разных материалов

Рис. 2.1. Диаграммы сжатия:

1 – малоуглеродистой стали; 2 – чугуна; 3 – бетона;

4 – сосны вдоль волокон; 5 – сосны поперек волокон

Разрушение чугунного образца происходит внезапно при незначительных остаточных деформациях. Разрушению предшествует образование трещин, расположенных приблизительно под углом 45° к образующим боковой поверхности образца, т.е. по линиям действия максимальных касательных напряжений (рис. 2.2,б).

Характер разрушения образцов из бетона (цементного раствора, камня) показан на рис. 2.2,в – при наличии сил трения между плитами машины и торцами образца. Разрушение происходит путем выкрашивания материала у боковых поверхностей в средней части образца. Трещины образуются под углом 45° к линии действия нагрузки.

При снижении сил трения за счет нанесения слоя парафина на опорные поверхности образца разрушение происходит в виде продольных трещин, материал расслаивается по линиям, параллельным действию сжимающей силы, и сопротивление материала уменьшается (рис. 2.2, г).

Диаграмма сжатия бетона показана на рис. 2.1, кривая 3. Из диаграммы видно, что рост нагрузки сопровождается упругими деформациями вплоть до разрушения, что вообще характерно для хрупких материалов.

Вид образцов из различных материалов до и после сжатия

Рис 2.2. Вид образцов из различных материалов до и после испытания на сжатие:
а – малоуглеродистая сталь; б – чугун;
в – цементный раствор без смазки торцов;
г – цементный раствор со смазкой торцов;
д – дерево вдоль волокон;
е – дерево поперек волокон

Особым своеобразием отличается сопротивление сжатию древесины как материала анизотропного и обладающего волокнистой структурой. При сжатии, как и при растяжении, древесина обладает различной прочностью в зависимости от направления сжимавшей силы по отношению к направлению волокон.

Видео сжатия древесины вдоль волокон

Сжатие древесины поперек волокон

На рис. 2.1 изображены диаграммы сжатия образцов из древесины одной породы. Кривая 4 иллюстрирует сжатие образца вдоль волокон, а кривая 5 — поперек волокон. При сжатии вдоль волокон древесина значительно (в 8-10 раз) прочнее, чем при сжатии поперек волокон.

При сжатии вдоль волокон образец разрушается вследствие сдвига одной части относительно другой (рис. 2.2, д), а при сжатии поперек волокон древесина склонна к прессованию и не всегда удается определить момент начала разрушения (рис. 2.2, е).

Порядок выполнения и обработка результатов

Предложенные для испытания образцы замеряют и, поочередно устанавливая их между опорными плитами машины УММ-20, подвергают статическим нагружениям, в процессе которых на диаграммном аппарате производится запись диаграмм сжатия соответствующих материалов. По контрольной стрелке шкалы силоизмерителя фиксируются максимальные нагрузки для каждого из образцов.

По полученным диаграммам сжатия определяют максимальную нагрузку сжатия стального образца и разрушающие нагрузки для других образцов, корректируя их значения с показателями стрелки силоизмерителя, записывают показания в журнал испытаний. Далее определяют характерные значения напряжений и производят записи в журнал испытаний.

Необходимо сделать зарисовку разрушенных образцов и описать характер их разрушения. Дать сравнительную характеристику работы испытанных материалов.

Контрольные вопросы

  1. Какой вид имеет диаграмма сжатия стали? В чем отличие этой диаграммы от диаграммы растяжения?
  2. Какие механические характеристики можно определить по диаграмме сжатия стали?
  3. Каков вид диаграммы сжатия чугуна, бетона? Каков характер разрушения образцов из этих материалов?
  4. Какие механические характеристики определяют для хрупких материалов при их испытании на сжатие?
  5. Какой вид имеет диаграмма сжатия дерева вдоль волокон и какие механические характеристики можно определить по ней?
  6. Как разрушается дерево при сжатии вдоль и поперек волокон? В каком направлений дерево обладает лучшими механическими свойствами?
  7. Какие характеристики материала можно получить при испытании на сжатие малоуглеродистой стали, чугуна, бетона, дерева?
  8. Почему образцы из малоуглеродистой стали и из чугуна при сжатии приобретают бочкообразную форму? Почему это явление не наблюдается у бетонных образцов?

Определение модуля упругости I рода для стали >
Примеры решения задач >

Источник

Читайте также:  Прочность при осевом растяжении бетона