Предел прочности при растяжении алюминия мпа

Предел прочности при растяжении алюминия мпа thumbnail

Что такое механические свойства?

Механические свойства алюминия, как и других материалов – это свойства, которые связаны с упругой и неупругой  реакцией материала на приложение к нему нагрузки, в том числе, зависимость между напряжениями и деформациями. Примерами механических свойств являются:

  • модуль упругости (при растяжении, при сжатии, при сдвиге)
  • предел прочности (при растяжении, при сжатии, при сдвиге)
  • предел текучести
  • предел усталости
  • удлинение (относительное) при разрыве
  • твердость.

Механические свойства часто ошибочно относят к физическими свойствам.

Механические свойства материалов, в том числе, алюминия и его сплавов, которые получают путем испытания материала на растяжение, например, модуль упругости при растяжении, прочность при растяжении, предел текучести при растяжении и относительное удлинение называют механическими свойствами при растяжении.

Модуль упругости

Модуль упругости, который часто называют модулем Юнга – это отношение напряжения, которое приложено к материалу, к соответствующей деформации в том интервале, когда они являются прямо пропорциональными друг к другу.

Различают три типа напряжений и соответственно три типа модулей упругости для любого материала, в том числе для алюминия:

  • модуль упругости при растяжении
  • модуль упругости при сжатии
  • модуль упругости при сдвиге (сдвиговый модуль упругости).

Таблица – Модули упругости при растяжении алюминия и других металлов [1]

 Предел прочности при растяжении алюминия мпа

Предел прочности при растяжении алюминия мпа

Рисунок 1 – Кривые растяжения алюминия и низкоуглеродистой стали [4]

Предел прочности при растяжении алюминия мпа

Рисунок 2 – Влияние легирующих элементов в алюминиевых сплавах на их плотность т модуль упругости [4]

Прочность при растяжении

Отношение максимальной нагрузки перед разрушением образца при испытании его на растяжение на исходную площадь поперечного сечения образца. Также применяются термины «предел прочности при растяжении» и «временное сопротивление разрыву».

Предел прочности при растяжении алюминия мпа
Рисунок 3 – Кривые растяжения алюминия в сравнении и различными металлами и сплавами [4]

Предел текучести

Напряжение, которое необходимо для достижения заданной малой пластической деформации в алюминии или другом материале при одноосной растягивающей или сжимающей нагрузке.

Если пластическая деформация под воздействием растягивающей нагрузки задается как 0,2 %, то применяется термин «предел текучести 0,2 %» (Rp0,2).

Предел прочности при растяжении алюминия мпа

Рисунок 4 – Типичная диаграмма напряжение-деформация
для алюминиевых сплавов

Удлинение (при разрыве)

Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.

Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.

Предел прочности при растяжении алюминия мпа
Рисунок 5 – Влияние легирующих элементов на прочностные свойства и относительное удлинение [4]

Удлинение А

Удлинение в процентах после разрыва образца при исходном расстоянии между метками  5,65 · √ S0, где S0 – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.

Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.

Удлинение А50мм

Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.

Сдвиговая прочность

Максимальное удельное напряжение, то есть максимальная нагрузка, разделенная на исходную площадь поперечного сечения, которую выдерживает материал при испытании на сдвиг. Сдвиговая прочность обычно составляет около 60 % от прочности при растяжении.

Сдвиговая прочность является важной характеристикой качества заклепок, в том числе, алюминиевых.

Предел прочности при растяжении алюминия мпа
Рисунок 6 – Прочность на сжатие, прочность на сдвиг, несущая прочность и
твердость различных алюминиевых сплавов [4]

Коэффициент Пуассона

Отношение между продольным удлинением и поперечным сокращением сечения при одноосном испытании. Для алюминия и всех алюминиевых сплавов во всех состояниях коэффициент Пуассона обычно составляет 0,33 [2].

Твердость

Сопротивление металла пластическому деформации, обычно измеряемое путем отпечатка.

Твердость Бринелля (HB)

Сопротивление проникновению сферического индентора при стандартизированных условиях.

Для алюминия и алюминиевых сплавов твердость НВ приблизительно равна 0,3·Rm, где Rm – предел прочности при растяжении, выраженный в МПа [2].

Если применяется индентор из карбида вольфрама, то применяется обозначение HBW.

Твердость Викерса (HV)

Сопротивление проникновению алмазного индентора в виде квадратной пирамиды при стандартизированных условиях. Твердость HV приблизительно равна 1,10·HB [2].

Усталость

Тенденция металла разрушаться при длительных циклическом напряжении, которое значительно ниже предела прочности при растяжении.

Предел прочности при растяжении алюминия мпа
Рисунок 7 – Различие в усталостном поведении низкоуглеродистой стали иалюминиевых сплавов [3]

Усталостная прочность

Максимальная амплитуда напряжения, которую может выдерживать изделие при заданном количестве циклов нагружения. Обычно выражается как амплитуда напряжения, которая дает 50%-ную вероятность разрушения после заданного количества циклов нагружения [2].

Усталостная выносливость

Предельное напряжение, ниже которого материал будет выдерживать заданного количество циклов напряжения [2].

Механические свойства алюминия и алюминиевых сплавов

В таблицах ниже [3] представлены типичные механические свойства алюминия и алюминиевых сплавов:

  • предел прочности при растяжении
  • предел текучести при растяжении
  • удлинение при растяжении
  • усталостная выносливость
  • твердость
  • модуль упругости

Механические свойства представлены отдельно:

  • для алюминиевых сплавов, упрочняемых нагартовкой.
  • для алюминиевых сплавов, упрочняемые термической обработкой.Предел прочности при растяжении алюминия мпа

Предел прочности при растяжении алюминия мпа

Эти механические свойства – типичные. Это означает, что они годятся только для сравнительных целей, а не для инженерных расчетов. В большинстве случаев они являются средними значениями для различных размеров изделий, их форм и методов изготовления.

Источник:

  1. Материалы Алюминиевой ассоциации Германии
  2. Global Advisory Group GAG – Guidance “Terms and Definitions” – 2011-01
  3. Aluminium and Aluminium Alloys. – ASM International, 1993.
  4. TALAT 1501

Источник

Прочностные характерстики сплавов

Практически для любого конструкционного материала, в том числе, и для алюминия, основными механическими характеристиками являются:

  • предел прочности на растяжение,
  • предел текучести 0,2 %
  • относительное удлинение.

Алюминиевые конструкционные сплавы имеют минимальную прочность на растяжение в интервале от 200 до 500 МПа. Максимальную прочность имеют аэрокосмические сплавы, легированные цинком и медью, например, сплав 7075 (рисунок 1).

Читайте также:  Связки икроножной мышцы растяжение

Предел прочности при растяжении алюминия мпа

Рисунок 1 – Уровни прочности алюминиевых сплавов

Нелегированный алюминий не способен достигать такого уровня прочности даже в нагартованных (наклепанных) состояниях, которые возникают в результате его холодной пластической деформации. Эти состояния достигаются, например, при холодной прокатке листов и волочении прессованных труб. Вместе с тем, холодная деформация нелегированного алюминия приводит к значительному росту его прочностных свойств (предела прочности Rm при растяжении и предела текучести Rp0,2) по сравнению с нелегированным алюминием в «мягком» состоянии, например, после отжига (рисунок 2).

Типичными конструкционными алюминиевыми сплавами, которые применяют для несущих конструкций зданий и сооружений, являются высоколегированные варианты термически неупрочняемых сплавов систем Al-Mg и Al-Mg-Mn и термически упрочняемых сплавов систем Al-Mg-Si и Al-Zn-Mg.

Предел прочности при растяжении алюминия мпа

Рисунок 2- Минимальные величины предела текучести 0,2% и
предела прочности при растяжении
согласно европейских стандартов EN 485-2, EN 754-2 и EN 755-2
для различных типов деформируемых алюминиевых сплавов [1]

Два механизма упрочнения

Существует два механизма упрочнения алюминиевых сплавов, которые могут дополнять друг друга:

  • деформационное упрочнение (нагартовка) и
  • термическое упрочнение (старение).

Точкой отсчета для оценки степени роста прочности алюминиевых сплавов в результате деформационного или термического упрочнения обычно применяют величины прочностных характеристик сплава в «мягком» состоянии, которым является его состояние после полного отжига.

Даже в состоянии полного отжига прочность любого сплава возрастает с увеличением содержания атомов внедрения в твердом растворе алюминия, то есть увеличения содержания легирующих элементов. Примерами являются сплавы систем Al-Mg и Al-Mg-Mn, которые показаны кружками с плюсиками (+) в нижней части диаграммы рисунка 1.

Деформационное упрочнение

Деформационное упрочнение – это пластическая деформация, например, в результате холодной прокатки, которая создает дислокации в кристаллической решетке алюминия. С ростом степени пластической деформации эти дислокации все больше сталкиваются друг с другом и, в результате этого, увеличивают сопротивление дальнейшей деформации и, следовательно, происходит увеличение уровня прочности. Деформационное упрочнение (нагартовка) проявляется себя в виде сильного увеличения отношения  Rp0,2/Rm с соответствующим заметным снижением величины относительного удлинения при разрушении испытательного образца.

Предел прочности при растяжении алюминия мпа

Рисунок 3 – Влияние степени нагартовки на механические свойства [3]

Этот механизм упрочнения применяют для повышения прочности алюминия и алюминиевых сплавов следующих систем легирования:

  • Al
  • Al-Mn
  • Al-Mg
  • Al-Mg-Mn

Смягчающий отжиг

Рекристаллизация

Любое увеличение прочности в результате деформационного упрочнения исчезает при температуре выше 250 ºС как следствие рекристаллизации и прочность алюминиевого сплава возвращается к тому уровню, которые было у него в «мягком» состоянии. Отжиг при температуре ниже температуры рекристаллизации (которая зависит от химического состава сплава и степени холодной пластической деформации) приводит к менее драматичной потере прочности в результате процесса возврата.

Предел прочности при растяжении алюминия мпаРисунок 4 – Изменение твердости и структуры при отжиге  [3]

Возврат

Такое термическое смягчение (отжиг при температуре 200-250 ºС) применяют, например, для получения «полутвердого» состояния для листа, который находится в «твердом» состоянии. Для заданного уровня прочности алюминиевого сплава относительное удлинение будет значительно выше, чем для того же уровня прочности, которое получено просто холодной пластической обработкой.

Предел прочности при растяжении алюминия мпа

Рисунок 5 – Изотермические кривые отжига сплава 5754 [3]

Термическое упрочнение

Термическое упрочнение алюминиевых сплавов происходит в основном за счет механизма старения. Этот упрочняющий механизм применим только некоторым системам алюминиевых сплавов, таким как:

  • Al-Cu
  • Al-Cu-Mg
  • Al-Mg-Si
  • Al-Zn
  • Al-Zn-Mg
  • Al-Zn-Сu-Mg

Нагрев под закалку и закалка

Предварительной операцией для этого механизма упрочнения является операция нагрева до температуры, при которой как можно больше легирующих элементов перешло в твердый раствор алюминия. Эта операция называется термической обработкой на твердый раствор или нагревом под закалку. Затем сплав быстро охлаждают до комнатной температуры путем закалки, что приводит к переохлаждению твердого раствора алюминия и «замораживанию» в нем легирующих элементов в термодинамически неравновесном состоянии.

Предел прочности при растяжении алюминия мпаРисунок 6 – Операции термического упрочнения сплавов серии 6ххх [3]  

Старение

Процесс упрочнения старением происходит, если этот закаленный сплав:

  • хранят в течение длительного времени при комнатной температуре (естественное старение) – рисунок 7;
  • выдерживают при повышенной температуре (около 200 ºС) в течение нескольких часов (искусственное старение) – рисунок 8.

Предел прочности при растяжении алюминия мпа
Рисунок 7 – Влияние температуры на естественное старение сплава 2024
(Rm – предел прочности при растяжении, Rp0.2 – предел текучести (0,2%)) [3]

Предел прочности при растяжении алюминия мпа
Рисунок 8 – Типичные кривые искусственного старения
при различных температурах для сплава 2024 [3]

Предел прочности  

На рисунке 9 показаны типичные кривые напряжение-деформация при испытаниях на одноосное растяжение четырех различных алюминиевых сплавов в сравнении с:

  • низкоуглеродистой сталью;
  • высокопрочной сталью и
  • титановым сплавом.

krivye-naprjazenie-deformacija-aljuminija-i-stali

Рисунок 9– Кривые напряжение-деформация алюминиевых сплавов
в сравнении с другими конструкционными материалами [2]

     Алюминий представляют:

  • 99,5 %-ный алюминий (марка алюминия 1050А по международной классификации – аналог марки алюминия АД0 по ГОСТ 4784-97)  в отожженном состоянии; хорошо подходит для глубокой штамповки;
  • алюминиевый сплав системы Al-Mg с 4,5 % магния – сплав 5083 (АМг4,5) в полунагартованном состоянии (Н12); применяется в морских и сварных конструкциях;
  • алюминиевый сплав 6082 (АД35) системы Al-Mg-Mn-Si, закаленный и состаренный до состояния Т6 (на максимальную прочность); применяется в строительстве;
  • алюминиевый сплав 7075 (В95) системы Al-Zn-Mg-Cu в состоянии максимального термического упрочнения; применяется в самолетостроении.

(Численные данные по прочности на растяжение многих алюминиевых сплавов см. здесь).

Отношение прочность/вес 

Как видно из рисунка 1, из всех представленных металлов высокопрочные стали имеют самое высокое отношение прочности к весу. За ними следует титановый сплав Ti-6Al-4V и самолетные алюминиевые сплавы и чуть далее – алюминиевые сплавы 5083-Н12 и 6082-Т6.

Если же рассматривать прочность, которая достигается на единицу массы, поделив прочность на плотность, то мы получим совсем другую картину (рисунок 10). При таком подходе наиболее эффективным конструкционным материалом является алюминиевый сплав 7075, а сплавы 5083-Н12 и 6082-Т6 выглядят более эффективными, чем низкоуглеродистые стали.

Читайте также:  Нужна ли тугая повязка при растяжении

 prochnost-aljuminija-po-otnosheniju-k-plotnosti

Рисунок 10 – Прочность на единицу плотности алюминиевых сплавов и
других конструкционных материалов [2]

Источники:
1. Материалы Алюминиевой ассоциации Германии
2. TALAT 1501
3. Corrosion Aluminium /Ch. Vargel – ELSEVIER, 2004  

Источник

 СВОЙСТВА    АЛЮМИНИЯ      

Содержание:

— марки алюминия

— физические свойства

— коррозионные свойства

— механические свойства

— технологические свойства

— применение

Марки алюминия.

       Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его  малая плотность (примерно 2.70 г/куб.см).  Температура плавления алюминия около 660 С.

       Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла.  Основными естественными примесями в алюминии являются железо и кремний.  Железо, например, присутствуя в виде самостоятельной фазы Fe-Al,  снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.

 

       В зависимости от степени очистки первичный алюминий разделяют на алюминий  высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97).  Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах

1)      Металловедение алюминия и его сплавов. Под ред. И.Н.Фридляндер. М. 1971.2)      Механические и технологические свойства металлов. А.В.Бобылев. М. 1980. 

       Ниже в таблице приведена сокращенная информация о большей части марок алюминия. Также указано содержание его основных естественных примесей – кремния и железа.

 

Марка Al, %Si, %Fe, %Применения
Алюминий высокой чистоты
А99599.995

0.0015

0.0015

— Химическая аппаратура

— Фольга для обкладок конденсаторов

— Специальные цели

А9899.98

0.006

0.006

А9599.95

0.02

0.025

Алюминий технической чистоты
А8 АД000  99.8

0.10

0.15

0.12

0.15

   

— Катанка для производства

  кабельно-проводниковой продукции

  (из А7Е и А5Е).

— Сырье для производства алюминиевых сплавов

— Фольга

— Прокат (прутки, ленты, листы, проволока, трубы)

А7  АД00  99.7

0.15

0.2

0.16

0.25

А699.6

0.18

0.25

А5Е99.5

0.10

0.20

А5    АД0  99.5

0.25

0.25

0.30

0.40

АД199.3

0.30

0.30

А0      АД  99.0

    0.95

В сумме до 1.0 %

   

      Главное практическое различие между техническим и высоокоочищенным алюминием связано с отличиями в коррозионной устойчивости к некоторым средам. Естественно, что чем выше степень очистки алюминия, тем он дороже.

      В специальных целях используется  алюминий высокой чистоты. Для производства алюминиевых сплавов, кабельно-проводниковой продукции и проката используется технический алюминий. Далее речь будет идти о техническом алюминии.

 

       Электропроводность.

       Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с  медью в сфере кабельно-проводниковой продукции.

       На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния  0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.

     Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка  проводимость ухудшает.

     Величина удельного электрического сопротивления при температуре 20 С составляет  Ом*мм2/м или мкОм*м :

0.0277  –  отожженная проволока из алюминия марки А7Е

0.0280 –  отожженная проволока из алюминия марки А5Е

0.0290 – после прессования, без термообработки из алюминия марки АД0

     Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению)  алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.

      Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.

       Теплопроводность

      Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.

 

      Другие физические свойства.

     Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.

     Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.

        Коррозионные свойства алюминия.

       Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.

     В алюминии высокой чистоты окисная пленка сплошная и беспористая, имеет очень прочное сцепление с алюминием. Поэтому алюминий высокой  и особой чистоты очень стоек  к действию неорганических кислот, щелочей, морской воды и воздуха. Сцепление окисной пленки с алюминием в местах нахождения примесей значительно ухудшается и эти места становятся уязвимы для коррозии. Поэтому алюминий технической чистоты имеет меньшую стойкость. Например по отношению к слабой соляной кислоте стойкость рафинированного и технического алюминия различается в 10 раз.

Читайте также:  Заживляющая мазь от ушибов и растяжений

     На алюминии (и его сплавах) обычно наблюдается точечная коррозия. Поэтому устойчивость алюминия  и его сплавов во многих средах определяется не по изменению веса образцов и не по скорости проникновения коррозии, а по изменению механических свойств.

     Основное влияние на коррозионные свойства технического алюминия оказывает содержание железа. Так, скорость коррозии  в 5% растворе HCl для разных марок составляет (в ):

 

МаркаСодержаниеAlСодержание FeСкорость коррозии
А799.7%< 0.16%0.25 – 1.1
А699.6%< 0.25%1.2 – 1.6
А099.0%< 0.8%27 — 31

 

      Наличие железа уменьшает стойкость алюминия также к щелочам, но не сказывается на стойкости к серной и азотной кислоте. В целом  коррозионная стойкость технического алюминия в зависимости от чистоты ухудшается в таком порядке: А8 и АД000, А7 и АД00, А6, А5 и АД0, АД1, А0 и АД.

      При  температуре свыше 100С алюминий взаимодействует с хлором. С водородом алюминий не взаимодействует, но хорошо его растворяет, поэтому он  является основной составляющей газов, присутствующих в алюминии. Вредное влияние на алюминий оказывает водяной пар, диссоциирующий при 500 С, при более низких температурах действие пара незначительно.

     Алюминий устойчив в следующих средах:

— промышленная атмосфера

— естественная пресная вода до температур 180 С. Скорость коррозии возрастает при аэрации,    

  примесях едкого натра, соляной кислоты и соды.

— морская вода

— концентрированная азотная кислота

— кислые соли натрия, магния, аммония, гипосульфит.

— слабые (до 10%) растворы серной кислоты,

— 100% серная кислота

— слабые растворы фосфорной (до 1%), хромовой (до 10%)

— борная кислота в любых концентрациях

— уксусная, лимонная, винная. яблочная кислота, кислые фруктовые соки, вино

— раствор аммиака

     Алюминий неустойчив в таких средах:

— разбавленная азотная кислота

— соляная кислота

— разбавленная серная кислота

— плавиковая и бромистоводородная кислота

— щавелевая, муравьиная кислота

— растворы едких щелочей

— вода, содержащая соли ртути, меди, ионов хлора, разрушающих окисную пленку.

       Контактная коррозия

     В контакте с большинством  технических металлов и сплавов алюминий служит анодом и его коррозия будет увеличиваться.

       Механические свойства

      Модуль упругости E = 7000-7100 кгс/мм2 для технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).

      Модуль сдвига G  = 2700 кгс/мм2.

      Основные параметры механических свойств технического алюминия приведены ниже:

 

Параметр

Ед. изм.

Деформированный

Отожженный

Предел текучести ?0.2

кгс/мм2

8 — 12

4 — 8

Предел прочности при растяжении

кгс/мм2

13 — 16

8

Относительное удлинение при разрыве ?

%

5 – 10

30 – 40

Относительное сужение при разрыве

%

50 — 60

70 — 90

Предел прочности при срезе

кгс/мм2

10

6

Твердость

НВ

30 — 35

20

       Приведенные показатели очень ориентировочны:

       1) Для отожженного и литого алюминия эти значения зависят от марки технического алюминия. Чем больше примесей, тем больше прочность и твердость и ниже пластичность. Например твердость литого алюминия составляет: для А0 – 25НВ, для А5 – 20НВ, а для алюминия высокой чистоты А995 – 15НВ. Предел прочности при растяжении для этих случаев составляет: 8,5; 7.5 и 5 кгс/мм2, а относительное удлинение 20; 30 и 45% соответственно.

      2) Для деформированного алюминия механические свойства зависят от степени деформации, вида проката и его размеров. Например предел прочности при растяжении составляет не менее 15-16 кгс/мм2 для проволоки и 8 – 11 кгс/мм2 для труб.

      Однако, в любом случае, технический алюминий это мягкий и непрочный металл. Низкий предел текучести (даже для нагартованного проката он не превышает 12 кгс/мм2) ограничивает применение алюминия по допустимым нагрузкам.    

      Алюминий имеет низкий предел ползучести: при 20 С — 5 кгс/мм2, а при 200 С — 0.7 кгс/мм2. Для сравнения: у меди эти показатели равны 7 и 5 кгс/мм2 соответственно. 

      Низкая температура плавления и  температура начала рекристаллизации (для технического алюминия примерно 150 С), низкий предел ползучести ограничивают температурный диапазон эксплуатации алюминия со стороны высоких температур.

      Пластичность алюминия не ухудшается при низких температурах, вплоть до гелиевых. При понижении температуры от +20 С до — 269 С, предел прочности возрастает в 4 раза у технического алюминия и в 7 раз у высокочистого. Предел упругости при этом возрастает в 1.5 раза.

      Морозостойкость алюминия позволяет использовать его в криогенных устройствах и конструкциях.

      Технологические свойства

      Высокая пластичность алюминия позволяет производить фольгу (толщиной до 0.004 мм),  изделия глубокой вытяжкой, использовать его для заклепок.

      Алюминий технической чистоты при высоких температурах проявляет хрупкость.

      Обрабатываемость резанием очень низкая.

      Температура рекристаллизационного отжига 350-400 С, температура отпуска – 150 С.

      Свариваемость.

      Трудности сварки алюминия обусловлены 1) наличием прочной инертной окисной пленки, 2) высокой теплопроводности.

      Тем не менее алюминий считается хорошо свариваемым металлом. Сварной шов имеет прочность основного металла (в отожженном состоянии) и такие же коррозионные свойства. Подробно о сварке алюминия см., например, www.weldingsite.com.ua.

       Применение.

      Из-за низкой прочности алюминий применяется только для ненагруженных элементов конструкций, когда важна высокая электро- или теплопроводность, коррозионная стойкость, пластичность или свариваемость. Соединение деталей осуществляется сваркой или заклепками. Технический алюминий применяется как для литья, так и для производства проката.

На складе предприятия постоянно имеются листы, проволока и шины из технического алюминия.

(см. соответствующие страницы. сайта).  Под заказ поставляются чушки А5-А7.

Источник