Предел растяжения ст 3

Предел растяжения ст 3 thumbnail

В качестве заменителя стали ст3 применяют сталь ВСт3сп.

Твердость материала ст.3: HB 10 -1 = 131 МПа

Свариваемость ст 3: без ограничений

Флокеночувствительность стали ст.3: не чувствительна

Склонность к отпускной хрупкости: не склонна

Конструкционную углеродистую сталь обыкновенного качества Ст3 применяют для изготовления несущих и ненесущих элементов для сварных и несварных конструкций, а также деталей, работающих при положительных температурах. Листовой и фасонный прокат 5 категории (до 10мм) — для несущих элементов сварных конструкций предназначенных для эксплуатации в диапазоне от —40 до +425 °С при переменных нагрузках.

Сплав Ст3 содержит: углерода — 0,14-0,22%, кремния — 0,05-0,17%, марганца — 0,4-0,65%, никеля, меди, хрома — до 0,3% , мышьяка до 0,08%, серы и фосфора — до 0,05 и 0,04% соответственно.

Технологические свойства стали марки ст3

Сталь ст3 не склонна к отпускной хрупкости, нефлокеночувствительна. свариваемость без ограничений.

Качество конструкционной стали определяется коррозионной стойкостью, механическими свойствами и свариваемостью. По своим механическим характеристикам стали делят на группы: сталь обычной, повышенной и высокой прочности.

Основные свойства стали непосредственно зависят от химического элементов, входящих в состав сплава и технологических особенностей производства.

Основой структуры стали является феррит. Он является малопрочным и пластичным, цементит напротив, хрупок и тверд, а перлит обладает промежуточными свойствами. Свойства феррита не позволяют применять его в строительных конструкциях в чистом виде. Для повышения прочности феррита сталь насыщают углеродом (стали обычной прочности, малоуглеродистые), легируют добавками хрома, никеля, кремния, марганца и других элементов (низколегированные стали с высоким коэффициентом прочности) и легируют с дополнительным термическим упрочнением ( высокопрочные стали)

К вредным примесям относятся фосфор и сера. Фосфор образует раствор с ферритом, таким образом снижает пластичность металла при высоких температурах и повышает хрупкость при низких. Образование сернистого железа при избытке серы приводит к красноломкости металла. В составе стали ст3 допускается не более 0,05% серы и 0,04 % фосфора.

При температурах, недостаточных для образования ферритной структуры возможно выделение углерода и его скопления между зернами и возле дефектов кристаллической решетки. Такие изменения в структуре стали понижают сопротивление хрупкому разрушению, повышают предел текучести и временного сопротивления. Это явление называют старением, в связи с длительностью процесса структурных изменений. Старение ускоряется при наличии колебаний температуры и механических воздействиях. Насыщенные газами и загрязненные стали подвержены старению в наибольшей степени.

Конструкционные стали производят мартеновским и конвертерным способами. Качество и механические свойства сталей кислородно-конвертерного и мартеновского производства практически не отличаются, но кислородно-конвертерный способ проще и дешевле.

По степени раскисления различают спокойные, полуспокойные и кипящие стали. Кипящие стали — нераскисленные. При разливке в изложницы они кипят и насыщаются газами. Для повышения качества малоуглеродистых сталей используют раскислители — добавки кремния (0,12 — 0,3%) или алюминия (до 0,1 %). Раскислители связывают свободный кислород, а образующиеся при этом алюминаты и силикаты увеличивают количество очагов кристаллизации, способствуя образованию мелкозернистой структуры. Раскисленные стали называют спокойными, т.к. они не кипят при разливке. Спокойные стали более однородны, менее хрупкие, лучше свариваются и хорошо противостоят динамическим нагрузкам. Их применяют при изготовлении ответственных конструкций. Ограничивает применение спокойной стали высокая стоимость и по технико-экономическим соображениям наиболее распространенным конструкционным материалом является полуспокойная сталь. Для раскисления полуспокойной стали используется меньшее количество раскислителя, преимущественно кремния. По качеству и цене полуспокойные стали занимают промежуточное положение между кипящими и спокойными.

Из группы малоуглеродистых сталей обычной мощности (ГОСТ 380-71, с изм.) для строительных конструкций применяют сталь марок Ст3 и Ст3Гпс. Сталь ст3 производится спокойной, полуспокойной и кипящей.

В зависимости от эксплуатационных требований и вида конструкций, сталь должна отвечать требованиям ГОСТ 380-71. Углеродистая сталь подразделяется на 6 категорий. При поставке стали марок ВСт3Гпс и ВСт3 всех категорий требуется гарантированный химический состав, относительное удлинение, предел текучести, временное сопротивление, изгиб в холодном состоянии.

Требования ударной вязкости различаются по категориям.

При маркировке стали согласно ГОСТ 380-71 (с изм.) вначале ставят обозначение группы поставки, далее марки, степени раскисления и категории.

По ГОСТ 23570-79 устанавливаются более строгий контроль качества стали и ограничения содержания мышьяка и азота. Обозначение марки включает процентное содержание углерода ( в сотых долях процента), степень раскисления и буква Г для марганцовистых сталей.

Марка: Ст3сп — она же Ст3 или Ст.3 ! поскольку в случае если тип стали (сп — спокойная, пс- полуспокойная, кп — кипящая) не пишется после Ст3, то под сталью Ст3 понимается именно Ст3сп
Класс: Сталь конструкционная углеродистая обыкновенного качества
Использование в промышленности: несущие элементы сварных и несварных конструкций и деталей, работающих при положительных температурах
Читайте также:  Расчет ступенчатого бруса растяжение сжатие
Зарубежные аналоги марки стали Ст3сп
США A284Gr.D, A57036, A573Gr.58, A611Gr.C, GradeC, K01804, K02001, K02301, K02502, K02601, K02701, K02702, M1017
Германия1.0038, 1.0116, DC03, Fe360B, Fe360D1, RSt37-2, RSt37-3, S235J0, S235J2G3, S235JR, S235JRG2, St37-2, St37-3, St37-3G
ЯпонияSS330, SS34, SS400
ФранцияE24-2, E24-2NE, E24-3, E24-4, S235J0, S235J2G3, S235J2G4, S235JRG2
Англия1449-2723CR, 1449-3723CR, 3723HR, 40B, 40C, 40D, 4360-40B, 4360-40D, 4449-250, 722M24, Fe360BFU, Fe360D1FF, HFS3, HFS4, HFW3, HFW4, S235J2G3, S235JR, S235JRG2
ЕвросоюзFe37-3FN, Fe37-3FU, Fe37B1FN, Fe37B1FU, Fe37B3FN, Fe37B3FU, S235, S235J0, S235J2G3, S235JR, S235JRG2
ИталияFe360B, Fe360BFN, Fe360C, Fe360CFN, Fe360D, Fe360DFF, Fe37-2, S235J0, S235J2G3, S235J2G4, S235JRG2
БельгияFE360BFN, FE360BFU, FED1FF
ИспанияAE235BFN, AE235BFU, AE235D, Fe360BFN, Fe360BFU, Fe360D1FF, S235J2G3, S235JRG2
КитайQ235, Q235A, Q235A-B, Q235A-Z, Q235B, Q235B-Z, Q235C
Швеция1312, 1313
БолгарияBSt3ps, BSt3sp, Ew-08AA, S235J2G3, S235JRG2, WSt3ps, WSt3sp
ВенгрияFe235BFN, Fe235D, S235J2G3, S235JRG2
ПольшаSt3S, St3SX, St3V, St3W
РумынияOL37.1, OL37.2, OL37.4
Чехия11375, 11378
ФинляндияFORM300H, RACOLD03F, RACOLD215S
АвстрияRSt360B

Механические свойства стали Ст3сп при Т=20oС
ПрокатРазмерНапр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)
Сталь горячекатан.20 — 40380-49025

Особенности стали Сс3сп и электрошлаковая сварка: углеродистые стали — самый распространенный конструкционный материал. По объему применения стали этого класса превосходят все остальные. К углеродистым относятся стали с содержанием 0,1-0,7% С, при содержании остальных элементов не более: 0,8% Мn, 0,4% Si, 0,05% Р, 0,05% S, 0,5% Си, 0,3% Сг, 0,3% Ni. В табл. 9.1 приведен химический состав и механические свойства сталей, нашедших применение при изготовлении сварных конструкций с использованием электрошлаковой сварки.

По способу производства различают мартеновскую и конвертерную стали, по степени раскисления (в порядке возрастания) кипящую, полуспокойную и спокойную.

Спокойные углеродистые стали поступают в промышленность в виде отливок и поковок по ГОСТ 977-75, в виде горячекатаной стали обыкновенного качества по ГОСТ 380-71, качественных конструкционных горячекатаных сортовых сталей по ГОСТ 1050-74. Главным отличительным признаком этих сталей является содержание в них углерода.

Прочностные характеристики углеродистых сталей повышаются с увеличением содержания углерода, при этом их свариваемость ухудшается, так как возрастает опасность образования горячих трещин в шве. При содержании свыше 0,5% С стали практически не свариваются электрошлаковой сваркой без специальных приемов.

Чувствительность к горячим трещинам в шве возрастает с увеличением жесткости свариваемых конструкций. Предварительный и сопутствующий подогрев могут существенно снизить опасность появления трещин даже при сварке жестких стыков (например, на участке замыкания кольцевого шва). Одним из радикальных средств по предотвращению горячих трещин служит снижение скорости подачи электродной проволоки.

Углеродистые стали в настоящее время сваривают проволочными электродами, электродами большого сечения или плавящимися мундштуками. Наиболее широко применяют проволочные электроды и плавящиеся мундштуки.

Наиболее целесообразный путь повышения прочности металла шва заключается в увеличении содержания марганца, поскольку это не сопровождается снижением технологической прочности металла шва. Марганец увеличивает склонность металла к закалке и упрочняет феррит. Так, при легировании металла шва 1,5% Мn (0,12-0,14% С) достигаются те же прочностные характеристики, что и при 0,22-0,24% С (0,5-0,7% Мn). Металл шва в первом случае обладает большей стойкостью против кристаллизационных трещин и против перехода в хрупкое состояние. Положительное влияние на прочность оказывают также небольшие добавки в металл шва никеля, хрома и других легирующих элементов.

Для электрошлаковой сварки углеродистых сталей чаще всего используют флюс АН-8 и сварочные проволоки марок Св-08, Св-08А, Св-08 ГА, Св-08Г2С, Св-10Г2 (ГОСТ 2246-70). Так, при

сварке сталей 15, 15Л, Ст2 равнопрочные соединения могут быть получены при использовании проволок Св-08 и Св-08А. При сварке низкоуглеродистой стали СтЗ применяют проволоку Св-08ГС.

Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПа
ε— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа
— предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПа
σизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %
σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПа
J-1— предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, %
n— количество циклов нагружения
— предел кратковременной прочности, МПа R и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %
E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2T— температура, при которой получены свойства, Град
sT— предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по Бринеллю
C— удельная теплоемкость материала (диапазон 20o — T ), [Дж/(кг·град)]
HV
— твердость по Виккерсу pn и r— плотность кг/м3
HRCэ
— твердость по Роквеллу, шкала С
а— коэффициент температурного (линейного) расширения (диапазон 20o — T ), 1/°С
HRB— твердость по Роквеллу, шкала В
σtТ— предел длительной прочности, МПа
HSD
— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа
Читайте также:  Крем для растяжений и ушибов для спортсменов

Источник

Сталь – это сплав двух элементов железа, углерода, легирующих примесей, которые добавляют в металл для придания ему нужных свойств. Ст3 – это конструкционная углеродистая сталь обыкновенного качества, широко распространена во всех сферах промышленного производства. Является самым распатроненным металлом для несущих строительных конструкций. Из этого сплава делают лист, профиль, трубу, двутавры и другой металлопрокат.

Химический состав

Марки стали различаются по составу, который определяет механические характеристики, область применения и свариваемость материала.

Небольшое количество легирующих элементов и высокая пластичность Ст3 делает её самым распространённым сплавом, применяемым в строительстве. Ни одна стройка не может обойтись без проката из Ст3.

Химический состав материала включает следующие элементы:

  • железо – 97%;
  • углерод – 0,14-0,22%;
  • никель, медь, хром – каждый не больше 0,3%;
  • марганец — 0,4-0,65%;
  • кремний — 0,05-0,17%;
  • мышьяк менее 0,08%;
  • серы не более 0,05;
  • фосфор менее 0,04%.

Углерод определяет твёрдость, прочность, пластичность, показатели свариваемости, физико-механические свойства стали. Сера и фосфор – вредные примеси.

Легирующие элементы в структуре этого сплава, которые влияют на его характеристики – это марганец, хром, медь и никель.

Химические свойства стали

Физические и механические свойства

Сталь Ст3 это самая используемая марка металла, применяемая в строительстве и в машиностроении. Низкая цена в сочетании с физико-механическими показателями, которые определили популярность этого материала.

Перечислим механические показатели Ст3:

  • предел текучести 205-255 МПа;
  • временное сопротивление разрыву 370-490 МПа;
  • относительное удлинение 22-26%;
  • ударная вязкость при температуре:
  • 20 0С составляет 108 Дж/см2;
  • 20 0С равняется 49 Дж/см2;
  • твёрдость HB 10-1: 131 МПа.

Прочностные показатели предел текучести и относительное удлинение – зависят от толщины и формы проката. Чем больше толщина металлопроката, тем ниже значение показателя, самые низкие показатели у труб, высокие показатели у листов, толщиной 5-10 мм.

Плотность Ст3 составляет 7850 кг/м3. Сплав относится к хорошо свариваемым материалам.

Механические свойства стали

Маркировка Ст3

Классифицируются низкоуглеродистые стали по составу степени расселения. Раскисление – это процесс удаления из расплава кислорода, являющегося вредной примесью. Он ухудшает механические и другие свойства материала.

По степени раскисления сплав бывает трёх видов:

  • спокойная обозначается «сп»;
  • полуспокойная – маркировка «пс»;
  • кипящая – «кп».

Проведём расшифровку материала Ст3Гпс. Буквы «Ст» обозначают сталь. Цифра «3» – это процентное содержание углерода, чем больше цифра, тем больший процент углерода содержится в металле. Буква Г — пишется, если процент содержания марганца в 0,8% и более. ПС – полуспокойная.

Разновидности сплава Ст3

Спокойная сталь раскисляется с использованием марганца, кремния и алюминия. Это дорогой и высококачественный материал. За счёт однородной структуры спокойный металл пластичнее и коррозионно устойчивее. Применяется для изготовления несущих ответственных конструкций, узлов машин, механизмов, которые работают при отрицательных температурах и динамических нагрузках.

Полуспокойная сталь раскисляется марганцем и алюминием. Показатели прочности и пластичности у этого материала близки к спокойной стали, но уступают ей. Применяется при возведении несущих металлоконструкций, где требования к прочностным показателям ниже, чем у конструкций из спокойного металла. Преимуществом этого сплава – его стоимость дешевле.

Кипящая сталь самая дешёвая, раскисляется только марганцем. При заливке этого расплава в слябы происходит активное кипение – выделяются содержащиеся в сплаве газы. В разных частях слитка может иметь неоднородные свойства. Кипящая металл хрупкий, плохо сваривается и подвержена коррозии. Применяется для изготовления конструкций, к которым не предъявляются высокие требования.

Сталь минск

Применение Ст3

Из спокойной стали производят: лист, уголок, швеллер, арматуру, двутавровую балку и другой металлопрокат, который используют для изготовления:

  • трубопроводной арматуры, труб, фасонных изделий;
  • мостовых кранов, несущих железнодорожных металлоконструкций, каркасов зданий, внутрицеховых металлоконструкций, железнодорожных и автомобильных мостов;
  • ёмкостей для хранения воды и нефтепродуктов, железнодорожных вагонов, цистерн для перевозки нефтепродуктов;
  • кузовов автомобилей, корпусов судов;
  • других ответственные конструкции, применяемых во всех отраслях промышленности, работающих при низких температурах окружающего воздуха, в условиях динамических знакопеременных нагрузок.

Полуспокойная сталь используется для тех же металлоконструкций и деталей, что и спокойная, но при условии, что эти изделия не будут работать при температурах ниже -10 0С.

Читайте также:  Растяжение плеча ребенка до года

Кипящая сталь. Применяется для малонагруженных, второстепенных, ненагруженных металлоконструкций, которые работают при постоянных нагрузках. Из неё изготавливают заборы, заземление, кронштейны, листовую обшивку, другие элементы зданий и металлоконструкций.

Источник

Óãëåðîäèñòàÿ ñïîêîéíàÿ ñòàëü îáûêíîâåííîãî êà÷åñòâà ìàðêè Ñò3ñï (Ñò3ñï5) âûïóñêàåòñÿ ïî ÃÎÑÒ 380 «ÑÒÀËÜ óãëåðîäèñòàÿ îáûêíîâåííîãî êà÷åñòâà. Ìàðêè».

Ñòàëü Ñò3ñï (Ñò3ñï5) èñïîëüçóåòñÿ ïðè èçãîòîâëåíèè ãîðÿ÷åêàòàíîãî ñîðòîâîãî, ôàñîííîãî (óãîëêè, äâóòàâðû, øâåëëåðû), ëèñòîâîãî, øèðîêîïîëîñíîãî óíèâåðñàëüíîãî ïðîêàòà, õîëîäíîêàòàíîãî òîíêîëèñòîâîãî ïðîêàòà è ãíóòûõ ïðîôèëåé, ïðåäíàçíà÷åííûõ äëÿ ñòðîèòåëüíûõ ñòàëüíûõ êîíñòðóêöèé ñî ñâàðíûìè è äðóãèìè ñîåäèíåíèÿìè, à òàêæå ñëèòêîâ, áëþìîâ, ñëÿáîâ, ñóòóíêè, çàãîòîâêè êàòàíîé è íåïðåðûâíîëèòîé, òðóá, ïîêîâîê è øòàìïîâîê, ëåíò, ïðîâîëîêè, ìåòèçîâ è äð.

Õèìè÷åñêèé ñîñòàâ

Õèìè÷åñêèé ñîñòàâ ñòàëè Ñò3ñï ïî ïëàâî÷íîìó àíàëèçó êîâøîâîé ïðîáû äîëæåí ñîîòâåòñòâîâàòü íîðìàì, ïðèâåäåííûì â òàáë. 1 (òàáë. 1-2 ÃÎÑÒ 380-2005).

Òàáëèöà 1

Õèìè÷åñêèé ñîñòàâ ñòàëè Ñò3ñï ïî ïëàâî÷íîìó àíàëèçó êîâøîâîé ïðîáû

óãëåðîäàìàðãàíöàêðåìíèÿñåðûôîñôîðàõðîìàíèêåëÿìåäèìûøüÿêààçîòà
Ìàññîâàÿ äîëÿ, %Ìàññîâàÿ äîëÿ ýëåìåíòà, %, íå áîëåå
0,14-0,220,40-0,650,15-0,300,0500,0400,300,080,010
Ïðåäåëüíûå îòêëîíåíèÿ ïî ìàññîâîé äîëå ýëåìåíòîâ, %
+0,03
−0,02
+0,05
−0,03
+0,03
−0,02
+0,005+0,002

Ìåòîäû îòáîðà ïðîá äëÿ îïðåäåëåíèÿ õèìè÷åñêîãî ñîñòàâà ñòàëè — ïî ÃÎÑÒ 7565, õèìè÷åñêèé àíàëèç ñòàëè — ïî ÃÎÑÒ 12359, ÃÎÑÒ 17745, ÃÎÑÒ 18895, ÃÎÑÒ 22536.0- ÃÎÑÒ 22536.11, ÃÎÑÒ 27809, ÃÎÑÒ 28033 èëè äðóãèìè ìåòîäàìè, óòâåðæäåííûìè â óñòàíîâëåííîì ïîðÿäêå è îáåñïå÷èâàþùèìè íåîáõîäèìóþ òî÷íîñòü.

Îïðåäåëåíèå ìàññîâîé äîëè õðîìà, íèêåëÿ, ìåäè, ìûøüÿêà, àçîòà è êðåìíèÿ äîïóñêàåòñÿ íå ïðîâîäèòü ïðè óñëîâèè ãàðàíòèè îáåñïå÷åíèÿ íîðì èçãîòîâèòåëåì (ï. 5.3 ÃÎÑÒ 380-2005).

Ìåõàíè÷åñêèå ñâîéñòâà

Ìåõàíè÷åñêèå ñâîéñòâà ñîðòîâîãî è ôàñîííîãî ïðîêàòà èç ñòàëè Ñò3ñï (Ñò3ñï5) ïðè ðàñòÿæåíèè, óäàðíàÿ âÿçêîñòü, à òàêæå óñëîâèÿ èñïûòàíèé íà èçãèá äîëæíû ñîîòâåòñòâîâàòü òðåáîâàíèÿì òàáë.2 (òàáë. 2-3 ÃÎÑÒ 535).

Òàáëèöà 2

Ìåõàíè÷åñêèå ñâîéñòâà ïðîêàòà èç ñòàëè Ñò3ñï (Ñò3ñï5)

Òîëùèíà,ììÌåõàíè÷åñêèå õàðàêòåðèñòèêèÈçãèá äî ïàðàëëåëü-íîñòè ñòîðîí (à — òîëùèíà îáðàçöà, d — äèàìåòð îïðàâêè)Óäàðíàÿ âÿçêîñòü KCU, Äæ/ñì² (êãñ·ì/ñì²)Óäàðíàÿ âÿçêîñòü KCV, Äæ/ñì² (êãñ·ì/ñì²)
Ïðåäåë òåêó÷åñòè σò, ÌÏà (êãñ/ìì²)Âðåìåííîå ñîïðîòèâ-ëåíèå σâ, ÌÏà (êãñ/ìì²)Îòíîñè-òåëüíîå óäëè-íåíèå δ5, %ïðè òåìïåðàòóðå, °Ñïîñëå ìåõàíè-÷åñêîãî ñòàðåíèÿïðè òåìïåðàòóðå, °Ñ
+20−20+20
íå ìåíååíå ìåíåå
Ìåõàíè÷åñêèå ñâîéñòâà ñîðòîâîãî è ôàñîííîãî ïðîêàòà
Äî 5 âêëþ÷.255 (26)380-490 (39-50)26d = a
Ñâ. 5 äî 10 âêëþ÷.108 (11)49 (5)49 (5)34 (3,5)
Ñâ. 10 äî 20 âêëþ÷.245 (25)370-480 (38-49)
Ñâ. 20 äî 40 âêëþ÷.235 (24)25 d = 2a
Ñâ. 40 äî 100 âêëþ÷.225 (23)23
Ñâ. 100205 (21)

Ïðèåìêà, ìàðêèðîâêà, óïàêîâêà, òðàíñïîðòèðîâàíèå è õðàíåíèå

Ïðèåìêó, ìàðêèðîâêó, óïàêîâêó, òðàíñïîðòèðîâàíèå è õðàíåíèå ìåòàëëîïðîäóêöèè èç ñòàëè Ñò3 âåäóò â ñîîòâåòñòâèè ñ òðåáîâàíèÿìè ÃÎÑÒ 7566.

Ìàðêèðîâêó ïðîêàòà èç ñòàëè Ñò3ñï ïðîâîäÿò íåñìûâàåìîé êðàñêîé êðàñíîãî öâåòà (ï. 6.1 ÃÎÑÒ 380-2005).

Àíàëîãè ñòàëè ìàðêè Ñò3ñï

Óãëåðîäèñòîé ñïîêîéíîé ñòàëè îáû÷íîãî êà÷åñòâà ìàðêè Ñò3ñï ïî ÃÎÑÒ 380-2005 ñîîòâåòñòâóþò ñòàëè ñëåäóþùèõ ìàðîê:

  • Ñ255 ïî ÃÎÑÒ 27772 (ïðèë. 1 ÃÎÑÒ 27772-88)
  • ÂÑò3ñï5-1 ïî ÒÓ 14-1-3023–80 è 18ñï ïî ÃÎÑÒ 23570–79 (òàáë. 51á ïðèë. 1 ÑÍèÏ II-23-81)
  • Å 235-C (Fe 360-C) ïî ISO 630:1995 (ïðèë. À ÃÎÑÒ 380-2005)

Ìû èçãîòàâëèâàåì ñëåäóþùèå òèïîâûå ìåòàëëîèçäåëèÿ:

Ëåñòíèöû ìàðøåâûå, ïëîùàäêè, ëåñòíèöû ñòðåìÿíêè è èõ îãðàæäåíèÿ ïî ñåðèè 1.450.3-7.94.2:

  • Ñòàëüíûå ëåñòíè÷íûå ìàðøè òèïà ËÃÔ ñî ñïëîøíûìè ðèôëåíûìè ñòóïåíÿìè
  • Ñòàëüíûå ïëîùàäêè òèïà ÏÃÔ ñî ñïëîøíûì ðèôëåíûì íàñòèëîì
  • Ñòàëüíûå ëåñòíè÷íûå ìàðøè òèïà Ëàñ ðåøåò÷àòûìè ñòóïåíÿìè èç ïðîñå÷êè
  • Ñòàëüíûå ïëîùàäêè òèïà Ïàñ ðåøåò÷àòûì íàñòèëîì èç ïðîñå÷êè
  • Ñòàëüíûå ëåñòíè÷íûå îãðàæäåíèÿ òèïà ÎËÃ
  • Ñòàëüíûå îãðàæäåíèÿ ïëîùàäîê òèïà ÎÏÁÃ è ÎÏÒÃ
  • Ñòàëüíûå ñòðåìÿíêè òèïà ÑÃ âåðòèêàëüíûõ ëåñòíèö
  • Ñòàëüíûå îãðàæäåíèÿ òèïà ÎÑÃ âåðòèêàëüíûõ ëåñòíèö

Ëåñòíèöû ìàðøåâûå, ïëîùàäêè, ëåñòíèöû ñòðåìÿíêè è èõ îãðàæäåíèÿ ïî ñåðèè 1.450.3-3.2:

  • Ñòàëüíûå ëåñòíè÷íûå ìàðøè òèïà ÌËÃÔ ñî ñïëîøíûìè ðèôëåíûìè ñòóïåíÿìè
  • Ñòàëüíûå ïëîùàäêè òèïà ÏÌÃÔ ñî ñïëîøíûì ðèôëåíûì íàñòèëîì
  • Ñòàëüíûå ëåñòíè÷íûå ìàðøè òèïà ÌËàñ ðåøåò÷àòûìè ñòóïåíÿìè èç ïðîñå÷êè
  • Ñòàëüíûå ïëîùàäêè òèïà ÏÌàñ ðåøåò÷àòûì íàñòèëîì èç ïðîñå÷êè
  • Ñòàëüíûå ëåñòíè÷íûå îãðàæäåíèÿ òèïà ÎÃë(ï)ÌËÃÝá
  • Ñòàëüíûå îãðàæäåíèÿ ïëîùàäîê òèïà ÎÃÏÌÃÝá
  • Ñòàëüíûå ñòðåìÿíêè òèïà ÑÃ âåðòèêàëüíûõ ëåñòíèö
  • Ñòàëüíûå îãðàæäåíèÿ òèïà ÎÃÑ âåðòèêàëüíûõ ëåñòíèö

Ñòàëüíûå ëåñòíèöû-ñòðåìÿíêè äëÿ êîëîäöåâ ïî:

  • ñåðèè 3.902-8
  • ñåðèè 3.903 ÊË-13 (êîëîäöû êàìåð òåïëîâûõ ñåòåé)
  • ÒÏÐ 901-09-11.84 (âîäîïðîâîäíûå ëåñòíèöû)
  • ÒÏÐ 902-09-22.84 (êàíàëèçàöèîííûå ëåñòíèöû)
  • ÒÌÏ 902-09-46.88 (êîëîäöû äîæäåâîé (ëèâíåâîé) êàíàëèçàöèè)
    Àíàëîãè÷íàÿ ïðîäóêöèÿ

  • Óãëåðîäèñòàÿ ñòàëü Ñ255 ïî ÃÎÑÒ 27772
  • Óãëåðîäèñòàÿ ñòàëü Ñò3ïñ ïî ÃÎÑÒ 380
  • Óãëåðîäèñòàÿ ñòàëü Ñò3êï ïî ÃÎÑÒ 380

Источник