Изгиб растяжение сжатие кручение изгиб

Изгиб растяжение сжатие кручение изгиб thumbnail

Сложное сопротивление – одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб – это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

условие прочности при косом изгибе

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

условие прочности для сечений имеющих две оси симметрии

где Wx , Wy – осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

прогиб при косом изгибе

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

внутренние силовые факторы при изгибе с растяжением

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

Напряжение в произвольно выбранной точке при изгибе с растяжением

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти при изгибе с растяжением

Условие прочночти имеет вид:

Косой изгиб

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

приведение силы к центру тяжести

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

нормальное напряжение при внецентренном растяжение или сжатие

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Условие прочности для бруса при внецентренном растяжение или сжатие

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Нормальное напряжение при кручении с изгибом

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Касательное напряжение от крутящего момента

Из третьей и четвёртой теории прочности:

эквивалентный крутящий момент

При кручении с изгибом условие прочности имеет вид:

условие прочности при кручении с изгибом

Источник

Не вдаваясь в теоретические основы физики процессом деформации твердого тела можно назвать изменение его формы под действием внешней нагрузки. Любой твердый материал имеет кристаллическую структуру с определенным расположением атомов и частиц, в ходе приложения нагрузки происходит смещение отдельных элементов или целых слоев относительно, другими словами возникают дефекты материалов.

Виды деформации твердых тел

Деформация растяжения

Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Схема деформация растяжения
Схема растяжения образца

Посмотрите прибор измеряющий деформацию растяжения

Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:

  1. воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
  2. воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
  3. разрушаться на пределе прочности

Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.

Читайте также:  Растяжение большого пальца руки повязка

Деформация сжатия

Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

Схема деформация сжатия
Схема сжатия образца

В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.

Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.

Деформация сдвига

Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Схема деформации сдвига
Схема сдвига образца

Посмотрите прибор измеряющий деформацию сдвига

Деформация изгиба

Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.

Схема деформации изгиба
Схема изгиба образца

Посмотрите прибор измеряющий деформацию изгиба

Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.

Деформация кручения

Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

Схема деформации кручения
Схема кручения образца

Посмотрите прибор измеряющий деформацию кручения

Пластическая и упругая деформация

В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму. Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.

За счет наличия деформационных способностей все известные материалы обладают набором полезных свойств – пластичностью, хрупкостью, упругостью, прочностью и другими. Исследование этих свойств достаточно важная задача, позволяющая выбрать или изготовить необходимый материал. Кроме того, само по себе наличие деформации и его детектирование часто бывает необходимо для задач приборостроения, для этого применяются специальные датчики называемые экстензометрами или по другому тензометрами.

Если вам понравилась статья нажмите на одну из кнопок ниже

Источник

Сочетание деформаций изгиба и кручения испытывает большинство валов, которые обычно представляют собой прямые брусья круглого или кольцевого сечения.

При расчете валов мы будем учитывать только крутящий или изгибающий моменты, действующие в опасном поперечном сечении, и не будем принимать во внимание поперечные силы, так как соответствующие им касательные напряжения относительно невелики.

Максимальные нормальные и касательные напряжения у круглых валов вычисляют по формулам, причем для

круглых валов Wp = 2 W.
Изгиб растяжение сжатие кручение изгиб

При сочетании изгиба и кручения опасными будут точки поперечного сечения вала, наиболее удаленные от нейтральной оси.

Применив третью теорию прочности, получим
Изгиб растяжение сжатие кручение изгиб

Выражение, стоящее в числителе, назовем эквивалентным моментом и обозначим через Мэкв. Тогда расчетная формула для круглых валов принимает вид аэкв = Мэкв/W [а] (валы обычно изготовляют из материала, у которого [crp J = [сгс ] = [а]).

По этой формуле расчет круглых валов ведут так же, как при расчете на изгиб, но не по изгибающему, а по эквивалентному моменту. Применив энергетическую теорию прочности, получим

Изгиб растяжение сжатие кручение изгиб

и тогда
Изгиб растяжение сжатие кручение изгиб

Для расчетов деталей на сочетание деформаций поперечного изгиба и кручения необходимо, как правило, составить расчетную схему конструкции и построить эпюры изгибающих и крутящих моментов, определить предположительно опасные сечения, после чего, применив одну из теорий прочности, произвести необходимые расчеты.

На рис. 7.6 в прямоугольных проекциях представлены: ведущий вал цилиндрической прямозубой передачи, расчетная схема вала и эпюры крутящего и изгибающих моментов в вертикальной и горизонтальной плоскостях. Эпюры построены на основании следующих данных:

передаваемая мощность Р = 40 кВт;

частота вращения вала п = 1000 об/мин;

диаметр делительной окружности зубчатого колеса D = 300 мм;

расстояние между опорами вала / = 400 мм;

Читайте также:  Как укоротить пружину растяжения

радиальная нагрузка на зуб колеса Ту = 0,36 F„ где /у окружная сила на колесе.

Проведем проверку прочности вала, изображенного на рис. 7.6, если дано: диаметр вала в опасном сечении d = 35 мм; допускаемое напряжение для вала [стр] = 70 МПа.

Прежде всего определим вращающий момент Т

Изгиб растяжение сжатие кручение изгиб

Далее определим окружное и радиальное усилия F, и /у:

Изгиб растяжение сжатие кручение изгиб

По этим данным строим эпюры Мк и Ми. Из эпюр видно, что опасное сечение расположено в месте закрепления зубчатого колеса.

Изгиб растяжение сжатие кручение изгиб

Рис. 7.6

Применим третью теорию прочности:
Изгиб растяжение сжатие кручение изгиб учитывая, что
Изгиб растяжение сжатие кручение изгиб

Взяв значения моментов из эпюр на рис. 7.6, получим

Изгиб растяжение сжатие кручение изгиб

Следовательно, прочность вала недостаточна, поэтому нужно увеличить диаметр вала примерно в два раза.

На рис. 7.7 в аксонометрической проекции представлены трансмиссионный вал ременной передачи, расчетная схема вала и эпюры крутящего и изгибающих моментов в вертикальной и горизонтальной плоскостях. Данные для расчетов на изгиб и кручение приведены на рисунке.

Изгиб растяжение сжатие кручение изгиб

Рис. 7.7

Сочетание деформаций кручения и растяжения испытывают, например, болты и крепежные винты, а сочетание деформаций кручения и сжатия — винты домкратов и винтовых прессов, сверла и шпиндели сверлильных станков. Эти детали обычно изготовляют из материалов, у которых [ар] = [стс] = [ст].

Нормальные и максимальные касательные напряжения в этих случаях вычисляют по формулам

Изгиб растяжение сжатие кручение изгиб

Применив третью теорию прочности, получим расчетную формулу

Изгиб растяжение сжатие кручение изгиб

Применив энергетическую теорию прочности, получим
Изгиб растяжение сжатие кручение изгиб

Источник

Испытания на растяжение являются наиболее распространенными, так как этот вид деформирования может создаваться практически без искажения (в отличие, например, от испытаний на сжатие, где из-за малой относительной длины образцов заметно влияние трения на торцах). Определяемые из испытаний на растяжение механические характеристики используются при расчетах на прочность при других видах нагружения.

Образцы для испытаний на растяжение изготавливаются из листового или цилиндрического проката, их основные размеры и вид обработки стандартизованы. Основная особенность образцов — наличие усиленных мест для захвата на концах и плавного перехода к рабочей части с меньшим постоянным сечением. Длина рабочей части l0 больше ее поперечного размера d0 (рис.4.1).

При испытаниях на сжатие используются относительно короткие цилиндрические образцы с отношением длины к диаметру сечения менее двух.

Рис. 4.1 Образец для испытаний на растяжение.

Испытания на растяжение и сжатие проводятся на специальных машинах с механическим или гидравлическим приводом. Обычно оба вида нагружения реализуются на одной машине, имеющей две рабочие зоны, разделенные подвижной траверсой (рис. 4.2).

Станина 1, колонны 3 и верхняя траверса 5 образуют жесткую раму. В одной рабочей зоне размещены захваты 7, 8 для испытаний образцов на растяжение, в другой — опорные плиты 9, 10 для испытаний на сжатие. В станине располагается силовой привод подвижной траверсы. Все усилия, создаваемые машиной, уравновешиваются в пределах станины. На фундамент передаются только вес Машины и динамическое воздействие при разрушении образца.

Рис. 4.2 Машина для испытания на растяжение и сжатие.

Для регистрации приложенной нагрузки используется силоизмерительное устройство 6. При испытаниях на растяжение силоизмерительное устройство размещается на верхней (неподвижной) траверсе, при испытаниях на сжатие — на станине или на подвижной траверсе. Величина силы, действующей на образец, может изменяться от долей Н (при испытаниях волокон или нитей) до сотен тонн (при испытаниях крупных деталей или узлов). Величина деформации образца определяется с помощью тензометров (механических или электрических).

Основным результатом этих испытаний являются диаграммы растяжения и сжатия материала, представляющие собой графики зависимости напряжение — относительная деформация σ = f(ε). По этим диаграммам (рис. 4.3) определяются характеристики материала: модуль упругости Е, пределы текучести (σт.р, σт.сж) и временной прочности (σв.р, σв.сж) при растяжении и сжатии и т.д. Модуль упругости Е определяется как тангенс угла наклона прямолинейного участка диаграммы к оси абсцисс: Е = tg а = σ / ε.

Испытания на сжатие проводятся реже, чем на растяжение и в основном для хрупких материалов, которые, как правило, имеют прочность на сжатие большую, чем на растяжение (рис. 4.3, в). Для пластичных материалов модуль упругости, пределы упругости и текучести при сжатии примерно такие же, как и при растяжении (рис. 4.3, б), поэтому основная информация об их свойствах получается из испытаний на растяжение. Разрушающие значения напряжений и соответствующие относительные деформации при испытаниях пластичных материалов на сжатие определить нельзя.

Рис. 4.3 Диаграммы растяжения и сжатия материала (графики зависимости напряжение ε — относительная деформация σ).

Стандартные испытания на изгиб проводятся для строительных материалов (бетона, кирпича, асбоцемента и др.) и стандартных изделий из относительно хрупких материалов, имеющих различные механические характеристики при растяжении и сжатии. Такие материалы, как правило, имеют прочность на растяжение более низкую, чем на прочность на сжатие, однако их испытание на растяжение затруднено из-за повышенной хрупкости. Кроме того, в реальных условиях растягивающие напряжения в деталях из хрупких материалов в основном возникают при поперечном; изгибе, и разрушение происходит от действия нормальных напряжений.

Испытания проводятся на изделиях или стандартных образцах, представляющих собой балку с прямоугольным, реже — круглым поперечным сечением. Балка устанавливается на две опоры (ножевые призмы) и симметрично нагружается одной или двумя поперечными силами (рис. 4.4).

Читайте также:  Экспандер для растяжения кожи

Рис. 4.4 Испытания на изгиб.

В первом случае изгиб называется трехточечным, во втором — четырехточечным, при котором средняя часть балки находится в условиях чистого изгиба. Нагружение образца поперечными силами производится с помощью испытательной машины, описанной выше (см. рис. 4.2), для чего она снабжается приспособлением — дополнительной траверсой с ножевыми призмами (рис. 4.5).

Рис. 4.5 Дополнительной траверсой с ножевыми призмами.

При испытаниях обычно определяются модуль упругости Еи и предел прочности σи при изгибе. Для этого используются зависимости между экспериментальными значениями поперечных сил Р или изгибающих моментов и соответствующими значениями максимальных прогибов wmax (прогибов в середине пролета). Для измерения прогибов используются датчики деформаций или стрелочные индикаторы.

Модуль упругости и предел прочности определяются по следующим формулам:

· при трехточечном изгибе (рис.4.4,а)

, (4.1)

· при четырехточечном изгибе (рис. 4.4,б)

, (4.2)

В этих формулах l0 — расстояние между опорами; I и h — момент инерции и высота поперечного сечения балки; Рр — разрушающее значение силы Р; с0 — плечо сил Р относительно опор.

Формулы (4.1), (4.2) для напряжения σи справедливы при условии, что разрушение при изгибе происходит в упругой области. При отклонении зависимости между изгибными напряжениями и деформациями от линейной до разрушения полученные значения предела прочности являются условными.

Испытания на кручение проводятся для определения механических характеристик материалов в условиях чистого сдвига. Испытания проводятся на стандартных образцах круглого или кольцевого сечения путем их кручения вокруг продольной оси. Схема нагружения образца при испытаниях показана на рис. 4.6.

Рис. 4.6 Схема нагружения образца при испытаниях на кручение.

Вращение передается через червячный или зубчатый редуктор 1 захвату 2 и закручивает образец, закрепленный в захватах 2 и 3. Захват 3 расположен на оси массивного маятника 4 с регулируемой длиной, который создает момент, противодействующий вращению. Величина крутящего момента Мк, действующего на образец, определяется по углу поворота маятника. Влияние изгиба и продольных усилий при испытаниях исключается путем строгой концентричности установки образца и свободного осевого перемещения концов образца.

В трубчатых образцах касательные напряжения распределены равномерно по длине и по окружности трубы, так что для тонкостенных образцов изменением касательных напряжений по толщине можно пренебречь. В то же время соотношение диаметра трубы и толщины ее стенок выбирается таким, чтобы не происходило разрушения образца из-за потери устойчивости.

В процессе нагружения производится непрерывное измерение момента Мк, и соответствующего значения угла закручивания φ. Угол φ определяется как разность углов поворота двух сечений образца, ограничивающих рабочую часть образца длиной l. Углы поворота сечений измеряются с помощью зеркального или стрелочного угломера.

Модуль упругости при сдвиге G определяется по формуле

(4.3)

где Iр — полярный момент инерции; Ip=nR4/2 — для образца круглого сечения; Ip =nR4[l-(r/R)4]/2 — для образца трубчатого сечения; R — наружный радиус образца; r — внутренний радиус трубчатого образца.

Относительная деформация при кручении (угол сдвига γ) в упругой области линейно зависит от радиуса сечения. Максимальное значение угла сдвига γ max = φ R /l.

Результатом испытаний являются диаграммы кручения (зависимости Мк = f(φ)), которые имеют вид подобный диаграммам растяжения (рис. 4.3). Некоторое их различие обусловлено тем, что при кручении напряжения изменяются по радиусу сечения и что форма и размер поперечного сечения круглого образца не изменяются, т.е. разрушение образца происходит без образования шейки. Поэтому даже для пластичных материалов на диаграммах кручения обычно нет площадки текучести и участка снижения нагрузки при увеличении угла φ.

По этим диаграммам определяются характеристики материала при кручении: пределы пропорциональности (τпщ) и текучести (τт), временное сопротивление (τв), а также соответствующие этим предельным напряжениям значения остаточной деформации сдвига (γост).

Максимальные напряжения в сечении при кручении образца равны:

(4.4)

Предел пропорциональности может быть определен по формуле

(4.5)

в которой Мпц — крутящий момент, соответствующий границе линейного участка диаграммы Мк = f(φ).

Формулы (4.3), (4,4) справедливы в пределах упругости материала, т. е. когда выполняется закон Гука для сдвига: τ = Gγ.

Сдвиговые напряжения выше предела упругости для тонкостенных трубчатых образцов вычисляются по формуле

(4.6)

При кручении в сечении образцов действуют сопоставимые по величине нормальные и касательные напряжения. Поэтому характер разрушения зависит от сравнительной способности материала сопротивляться растяжению и сдвигу.

Образцы из хрупких материалов разрушаются от действия растягивающих напряжений и трещины разрушения ориентированы по винтовым линиям, касательные к которым ориентированы под углом 45° к оси образца. Образцы из пластичных материалов разрушаются по сечению нормальному к оси образца.

Вопросы для самопроверки:

1. Каковы основные задачи испытаний материалов?

2. Что представляет собой испытание на растяжение?

3. Что представляет собой испытание на сжатие?

4. Что представляет собой испытание на кручение?

5. Что представляет собой испытание на изгиб?

Источник