Испытание на растяжение при изгибе

Испытание на растяжение при изгибе thumbnail

ОПРЕДЕЛЕНИЕ И ПРОВЕДЕНИЕ ИСПЫТАНИЙ БЕТОНА НА РАСТЯЖЕНИЕ И ИЗГИБ

Бетон используется во всех отраслях строительства. Обусловлено это высокой прочностью материала. Однако он также может иметь некоторые недостатки. Показатель прочности при сжатии у бетона один из самых высоких среди аналогичных материалов, а вот прочность на растяжении или при изгибе значительно уступает. На самом деле узнать свойства бетона крайне сложно, зная только вычислительные величины и соотношение отдельно взятых компонентов. Поэтому существует целый ряд методов и приёмов испытаний бетона на изгиб. Поговорим отдельно про каждый из них.

Как проводится испытание бетона на изгиб

Как правило, бетон не используется для работы на растяжение, тем не менее крайне важно знать его показатель предельной величины прочности на растяжение. Это стоит делать для того, что знать нагрузку, при которой возможно образование трещин, так как отсутствие подобной деформации необходимо для сохранения целостности конструкции и предупреждения разложения и коррозии. Трещины могут возникать при использовании высокопрочной арматуры из стали или при действии сдвигающей силы при диагональных напряжениях. Однако самой частой причиной возникновения щелей становится перепады температуры и усадка здания. В большинстве случаев при проектировании не принимается во внимание прочность бетона на растяжении, хотя данный показатель позволяет понять поведение конструкции в будущем.
Прямое приложение силы растяжения без числовой характеристики конического сечения (степень отклонения от окружности) создать крайне сложно, т.к. возможно воздействие вторичного напряжения забетонированными стержнями. Поэтому из-за таких проблем прочность бетона на растяжение измеряется путем изгиба прямого бетонного бруса без армирования. Максимальное значение растягивающего напряжения, которое образуется в нижних нитях испытуемой части, называется предел прочности на изгибе. Теоретический показатель вполне оправданно применим, т.к. напряжение взаимозависимо расстоянию от нейтральной оси.
График распределения величины нагрузки на бетон (которая предельно близка к разрушению) не является треугольным. Поэтому предел прочности на самом изгибе выше прочности на растяжение и обладает превышенным значением прочности, которое могло бы получиться при прямом растяжении испытуемых бетонных частей. Однако испытание оказывается весьма полезным, например, при конструировании дорожных плит и взлетно-посадочных полос в аэропортах, потому что напряжение не является в данных случаях критической определяющей.

Проверка качества бетона при изгибе и растяжении

Возможность бетона выдерживать нагрузки и не трескаться определяется значением растяжения. Данный показатель важен для железобетонной конструкции с целью исключения образования коррозии и увеличения эксплуатационного периода. Именно для этого и проводится испытание бетона на растяжение. На самом деле сгенерировать нужную растягивающую силу крайне сложно, поэтому зачастую во время испытаний используется брус без армирования в качестве испытательного пресса. Определяющим в данной ситуации является показатель растяжения в нижних волокнах. Это и станет пределом прочности на изгибе. Можно отметить, что более точным будет именно показатель изгиба, а не растяжение.
Максимальный показатель прочности на изгиб определяется несколькими факторами: параметры испытуемой части и условия подаваемой нагрузки. Существует две нагрузочные системы:
симметричная. Создается константный изгиб между 2-мя отдельно взятыми точками;
центральная. Образуется в середине пролета.
Метод симметрии позволяет определить более слабое место, где в будущем возможно образование трещин.
Определение прочности бетона на осевое растяжение
Основными предпосылками для испытания бетона на осевое растяжение выступают использование в перекрытиях и основаниях конструкционного бетона, а также использование гидротехнического раствора. Прочность определяется величиной сопротивления растяжению на оси или прочности на осевом растяжении. Обозначается сочетанием букв «Rt» и определяется по методике ГОСТ 10180-2012. Основные постулаты испытаний сохраняются, т.к. они аналогичны указанным параметрам во второй части десятого пункта.
Чтобы определить прочность на осевом растяжении, используются стандартные образцы 8-ки в 3-х вариантах. Рабочее сечение равняется 10*10 см и 15*15 см (это базовый экземпляр), а также 20*20 см.

Основная аппаратура

Для испытательных мероприятий используется разрывная машина и дополнительные приборы, которые указаны в ГОСТах в пункте 10 часть 2.
Алгоритм проведения испытаний
Выбранный образец крепится таким образом: ось образца должна проходить в центре каждого из захватов. Нагрузка подается постоянно с усилием (до полного уничтожения образца), равным показателю 52 кПа/с.
Сопротивление бетона растяжению можно вычислить по определенной формуле: .ФОРМУЛЫ НЕТ
В данном случае «β» является основным коэффициентом для экземпляров на осевое растяжение, он равен единице от начального размера. Для остальных случаев значение определяется экспериментальным способом. Все остальные показатели являются идентичными тем, что представлены в формуле.
Прочность бетона на изгиб
В большинстве случаев устойчивость к изгибу будет меньше показателя на сжатие практически в десять раз (при условии, что возраст бетона составляет 28 дней). Низкое значение обусловлено наличием трещин в нижней части структуры. По этой причине все железобетонные элементы оснащаются специальной арматурой ребристой формы, которая используется при возведении фундамента.
В случае испытания бетона могут использоваться различные параметры, однако особое внимание должно уделяться прочности на изгиб. Предел данного значения напрямую зависит от нескольких параметров: размера балки и уровня нагрузки. Узнать данный показатель можно по специальным методикам, которые мы приведем ниже.
Методика испытаний бетона на изгиб
Как правило, все операции проводятся с балками, которые должны иметь стандартные значения. Это в значительной степени снизит показатель погрешности и исключит вероятность ошибок в вычислениях всех данных. Линейный элемент подвергается испытанию с помощью прикладывания некоторых усилий в третьей части пролета. Для этого надо прибегнуть к использованию специализированного гидравлического оборудования. Для чего это надо? Такая техника позволит добиться сильного показателя давления, которое способно разрушить экземпляр. Это значение и станет определяющим показателем прочности конструкции на изгиб.
Стоит иметь в виду, что данная величина всегда будет меньше в сравнении с вертикальным сдавливанием. Показатель прочности важен для использования дорожных плит, т.е. для тех строений, на которых давление оказывается горизонтальным (или используются дополнительные воздействия), а не вертикальным способом. На сегодняшний день существует конкретная классификация моделей бетона, соответствующего стандартам М5-М50. Шаг равен пяти единицам (это также стоит учитывать). Важно отметить, что на практике значение давления не должно превышать 6 Мпа.
Как мы указывали выше, этот показатель является низким даже для самых устойчивых типов раствора. Такое положение дел обусловлено конструктивными особенностями бетона. Самым эффективным способом улучшения показателя считается использование каркасной основы. Как правило, это арматура, части которой соединены между собой. Металлические составляющие должны иметь рифленую поверхность за счет чего в несколько раз увеличивается коэффициент сцепления. Поэтому изгиб менее подвержен механическому воздействию и не разрушается так быстро. В большинстве случаев используется металлическая основа, но допустимы и другие варианты.
Важным моментом выступает тот факт, что показатель прочности может меняться в течение всего эксплуатационного периода конструкции. Для тех, кто хочет детальнее ознакомиться с измерением данного параметра стоит изучить специализированный государственный стандарт, который называется «ГОСТ 310.4-81». Именно в нем подробно указаны все предельно допустимые параметры и технологии измерений значений изгиба и растяжения бетонных конструкций.

Читайте также:  Растяжение спины выше поясницы

Подготовка к испытаниям

Для проведения всех испытаний лицо, ответственное за мероприятие, должно подготовить несколько образцов, которые выполняются в форме брусков. Размер должны быть следующие (значение указано в метрах):
0,2*0,2*0,8;
0,1*0,10*0,4;
0,15*0,15*0,6 (такой показатель является оптимальным для исследования).
В случае использования брусков других размеров к ним применяются масштабные коэффициенты, которые способны привести к эталону (вариант №3). Однако такие размеры имеют увеличенный вес, что в значительной степени добавляет сложности в проведении испытания.

Изготовление элементов

В период заполнения специальных форм бетонным раствором специалист должен провести армирование штыковым способом с помощью металлического стержня. Делается это для максимального уплотнения смеси. Формы должны полностью высохнуть. Отметим, что для окончательного схватывания требуется от 24 до 48 ч.
После затвердевания форм их необходимо раскрыть и полностью избавить от защитных элементов. Поверхность каждого элемента маркируется: указывается класс бетона, дата формирования, использования специальные примеси и прочие характеристики.

Хранение форм

После затвердения все элементы укладываются в лабораторный шкаф, где они должны пролежать 28 дней в абсолютно нормальных условиях. Это значит, что температура воздуха не должна превышать 20 градусов по Цельсию, а влажность 90%. В процессе хранения каждую форму поливают один раз в сутки (можно укладывать рядом увлажнённые опилки).

Испытания деталей

По истечении двадцати восьми дней лаборант достает бетонные формы и готовит их к определению прочности бетона на изгиб или растяжение. Для таких целей используется гидравлический пресс. На часть, расположенную внизу, устанавливается оборудование с двумя специальными опорами в форме ½ валиков с расстоянием между ними в 30 см. Сверху также должны присутствовать 2 опоры, установленные в центре элемента. На нижних опорах монтируется экспериментальный образец.
Затем на бетон подается нагрузка, которая распределяется равномерно, в центре давление обеспечивается за счет верхних валиков. На этапе разламывания образца пресс должен остановиться, а специалист фиксирует значение нагрузки в своем предельном максимуме. По формуле, приведённой выше, рассчитывается показатель прочности конструкции (обязательно учитывается конкретный вес, размер и выявленное в ходе испытание значение экземпляра). В качестве окончательного результата используется средний показатель 3-х вариантов формы. Все данные вносятся и протоколируются в специальном журнале.

Заключение

В данном материале мы рассмотрели все особенности и нюансы испытания бетона на растяжение и изгиб. Результаты, полученные в ходе исследований, являются абсолютно верными. Все представленные формулы можно смело использовать в своих экспериментах.

Ссылка на статью https://burosi.ru/ispitanie-betona-na-izgib-i-rastyajenie

Строительная лаборатория ООО “Бюро “Строительные исследования” занимается испытаниями конструкций и материалов в Санкт-Петербурге и Москве

Основная специализация лаборатории:

Бесплатно вызвать лаборанта на объект или задать вопрос эксперту можно:

1. Заполнив форму на нашем сайте https://burosi.ru/

2. По телефонам:

+7(812)386-11-75 — главный офис в Санкт-Петербурге

+7(965)006-94-59 (WhatsApp, Telegramm) — отдел по работе с клиентами Санкт-Петербург и Москва

3. Написать нам на почту

4. А также в комментариях к публикации.

Подписывайтесь на наши социальные сети и YouTube канал, там много интересной информации и лайфхаков.

Источник

7.3.1 Образец-призму устанавливают в испытательную машину по схеме на рисунке 2 и приложению Ж и нагружают до разрушения при постоянной скорости нарастания нагрузки (0,05±0,01) МПа/с.

— ширина и высота образца; — нагрузка; — распределенная нагрузка; — пролет; 1 — образец; 2 — шарнирно-неподвижная опора; 3 — шарнирно-подвижная опора

Рисунок 2 — Схема испытания на растяжение при изгибе

7.3.2 Если образец разрушился не в средней трети пролета или плоскость разрушения образца наклонена к вертикальной плоскости более чем на 15°, то при определении средней прочности бетона серии образцов этот результат испытания не учитывают.

Испытания на растяжение при раскалывании

7.4.1 Образец устанавливают на плиту испытательной машины по схеме на рисунке 3 и приложению И.

а) Образцы-цилиндры из бетона всех видов (кроме ячеистого бетона)

б) Образцы-цилиндры из ячеистого бетона

в) Образцы-кубы из бетона всех видов

г) Образцы-призмы из тяжелого бетона

Рисунок 3 — Схемы испытания на растяжение при раскалывании

7.4.2 С помощью держателя или временных опор проверяют, чтобы образец был отцентрирован при первоначальном приложении нагрузки. Нагружение проводят при постоянной скорости нарастания нагрузки (0,05±0,01) МПа/с.

Для равномерной передачи усилия на образец между стальной колющей прокладкой и поверхностью образца-куба или между опорными плитами испытательной машины и поверхностью образца-цилиндра устанавливают прокладку из фанеры (используют не более двух раз) или картона (используют не более одного раза) длиной не менее длины образца, шириной (15±1) мм и толщиной (4±1) мм.

7.4.3 Результаты испытания не учитывают, если плоскость разрушения образца наклонена к вертикальной плоскости более чем на 15° (см. рисунок 4).

Рисунок 4 — Погрешности расположения плоскостей действия нагрузки при испытании на растяжение при раскалывании

Испытание на осевое растяжение

7.5.1 Образец закрепляют в разрывной машине по одной из схем, приведенных в приложении К, и нагружают до разрушения при постоянной скорости нарастания нагрузки (0,05±0,01) МПа/с.

7.5.2 Результат испытаний не учитывают, если разрушение образца произошло не в рабочей зоне или плоскость разрушения образца наклонена к его горизонтальной оси более чем на 15°.

Обработка и оценка результатов испытаний

8.1 Прочность бетона на сжатие , МПа, вычисляют с точностью до 0,1 МПа по формуле

. (1)

Прочность бетона на осевое растяжение , растяжение при раскалывании , растяжение при изгибе , МПа, вычисляют с точностью до 0,01 МПа по формулам:

, (2)

, (3)

, (4)

где — разрушающая нагрузка, Н;

— площадь рабочего сечения образца, мм ;

, , — ширина, высота поперечного сечения призмы и расстояние между опорами соответственно при испытании образцов на растяжение при изгибе, мм;

, , , — масштабные коэффициенты для приведения прочности бетона к прочности бетона в образцах базовых размера и формы;

— поправочный коэффициент для ячеистого бетона, учитывающий влажность образцов в момент испытания.

8.2 Значения масштабных коэффициентов , , и определяют экспериментально по приложению Л. Допускается значения масштабных коэффициентов для отдельных видов бетонов принимать по таблице 4.

Таблица 4 — Масштабные коэффициенты

           
Форма и размеры образца, мм

Масштабные коэффициенты при испытании

 
 
на сжатие всех видов бетонов, кроме ячеистого

на растяжение при раскалывании

на растяжение при изгибе тяжелого бетона на осевое растяжение
 
 
 
 
тяжелого бетона мелкозернистого бетона  
 
 
 
Куб (ребро) или квадратная призма (сторона поперечного сечения)          
70 0,85 0,78 0,87 0,86 0,85
100 0,95 0,88 0,92 0,92 0,92
150 1,00 1,00 1,00 1,00 1,00
200 1,05 1,10 1,05 1,15 1,08
250 1,08 1,25
300 1,10 1,34
Цилиндры [диаметр высоту (длину)]          
100×200 1,16 0,98 0,99
150×300 1,20 1,13 1,08
200×400 1,24
250×500 1,26
300×600 1,28

Примечания

1 Для ячеистого бетона со средней плотностью менее 400 кг/м  масштабный коэффициент принимают равным 1,0 независимо от размеров и формы образцов.

2 Для ячеистого бетона со средней плотностью 400 кг/м  и более масштабный коэффициент для выбуренных образцов-цилиндров диаметром и высотой 70 мм и выпиленных образцов-кубов с ребром длиной 70 мм принимают равным 0,90, для образцов-цилиндров диаметром и высотой 100 мм и образцов-кубов с ребром длиной 100 мм — равным 0,95.

3 Применение экспериментальных масштабных коэффициентов , , и по приложению Л, отличающихся от единицы в сторону увеличения или уменьшения более чем это указано в настоящей таблице для отдельных видов бетонов и размеров образцов, не допускается.

Читайте также:  Можно ли делать йодовую сетку при растяжении

8.3 Значения поправочного коэффициента для ячеистого бетона принимают по таблице 5. Поправочный коэффициент при промежуточных значениях влажности бетона определяют линейной интерполяцией. Для других видов бетона значение коэффициента принимают равным единице.

Таблица 5 — Поправочные коэффициенты для ячеистого бетона

8.4 Прочность бетона (кроме ячеистого) в серии образцов определяют как среднеарифметическое значение прочности испытанных образцов в серии:

— из двух образцов — по двум образцам;

— из трех образцов — по двум образцам с наибольшей прочностью;

— из четырех образцов — по трем образцам с наибольшей прочностью;

— из шести образцов — по четырем образцам с наибольшей прочностью.

При отбраковке дефектных образцов прочность бетона в серии определяют по всем оставшимся образцам, если их не менее двух.

Результаты испытания серии из двух образцов при отбраковке одного образца не учитывают.

8.5 Прочность ячеистого бетона в серии образцов определяют как среднеарифметическое значение всех испытанных образцов серии.

8.6 При производственном контроле значения переходных коэффициентов от прочности бетона при одном виде напряженного состояния к другому виду напряженного состояния определяют экспериментально по приложению Л.

Приложение А

(обязательное)

Источник

Растяжение

Испытание на растяжение позволяет получить достаточно полную информацию о механических свойствах материала. Для этого применяют специальные образцы, имеющие в поперечном сечении форму круга (цилиндрические образцы) или прямоугольника (плоские образцы). На рис. 3.1 представлена схема цилиндрического образца на различных стадиях растяжения. Согласно ГОСТ 1497—84 геометрические параметры образцов на растяжение должны отвечать следующим соотношениям: /() = 2,82У7ф или /0 = = 5,65V^b, или /0 = 1 l,3VTb (гДе — начальная расчетная длина образца, Fq — начальная площадь поперечного сечения расчетной части образца). Для цилиндрических образцов отношение расчетной начальной длины /0 к начальному диаметру г/0, т.е. /0/б/0, называют кратностью образца, от которой зависит его конечное относительное удлинение. На практике применяют образцы с кратностью 2,5,5 и 10. Самым распространенным является образец с кратностью 5.

Рис. 3.1. Схемы цилиндрического образца на различных стадиях растяжения:

а — образец до испытания (/о и d$ — начальные расчетные длина и диаметр); б — образец, растянутый до максимальной нагрузки (/р и d? — расчетные длина и диаметр образца в области равномерной деформации); в — образец после разрыва (/к — конечная расчетная длина; dK — минимальный диаметр в месте разрыва)

Перед испытанием образец закрепляют в вертикальном положении в захватах испытательной машины. На рис. 3.2 представлена принципиальная схема типичной испытательной машины, основными элементами которой являются приводной нагружающий механизм, обеспечивающий плавное нагружение образца вплоть до его разрыва; силоизмерительное устройство для измерения силы сопротивления образца растяжению; механизм для автоматической записи диаграммы растяжения.

В процессе испытания диаграммный механизм непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах «нагрузка (Р) — абсолютное удлинение образца (А/)» (рис. 3.3). На диаграмме растяжения пластичных металлических материалов можно выделить три характерных участка: участок ОА — прямолинейный, соответствующий упругой деформации; участок ЛВ — криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; участок ВС — также криволинейный, соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит окончательное разрушение образца с разделением его на две части.

В области упругой деформации (участок О А) зависимость между нагрузкой Р и абсолютным упругим удлинением образца А/ пропорциональна и известна под названием закона Гука:

где к = EF{)/1() — коэффициент, зависящий от геометрии образца (площади поперечного сечения Е0 и длины /0) и свойств материала (параметр Е).

Рис. 3.2. Схема испытательной машины:

1 собственно машина; 2 винт грузовой; 3 — нижний захват (активный); 4 — образец; 5 — верхний захват (пассивный); 6 силоизмерительный датчик; 7 — пульт управления с электроприводной аппаратурой; 8 индикатор нагрузок; 9 — рукоятки управления; 10 — диаграммный механизм; 11 — кабель

Рис. 3.3. Схемы машинных (первичных) диаграмм растяжения пластичных материалов:

а — с площадкой текучести; 6 — без площадки текучести

Параметр Е (МПа) называют модулем нормальной упругости, характеризующим жесткость материала, которая связана с силами межатомного взаимодействия. Чем выше Еу тем материал жестче и тем меньшую упругую деформацию вызывает одна и та же нагрузка. Закон Гука чаще представляют в следующем виде:

где а = P/F$ — нормальное напряжение; 8 = Д///0 — относительная упругая деформация.

Наряду с модулем нормальной упругости Е существует модуль сдвига (модуль касательной упругости) G, который связывает пропорциональной зависимостью касательное напряжение т с углом сдвига (относительным сдвигом) у:

Еще одним важным параметром упругих свойств материалов является коэффициент Пуассона р, равный отношению относительной поперечной деформации (Ad/d^) к относительной продольной деформации (А///0). Этот коэффициент характеризует стремление материала сохранять в процессе упругой деформации свой первоначальный объем.

От коэффициента Пуассона р зависит соотношение между Е и G:

Как следует из уравнения (3.1), Е больше G, так как для смещения атомов отрывом требуется большее усилие, чем для смещения сдвигом.

Значения модуля нормальной упругости Е, модуля сдвига G и коэффициента Пуассона р для некоторых материалов приведены в табл. 3.1.

Читайте также:  Как восстанавливать колено после растяжения

При переходе от упругой деформации к упругопластической для некоторых металлических материалов на машинной диаграмме

Таблица 3.1

Значения модуля нормальной упругости Еу модуля сдвига G и коэффициента Пуассона р для некоторых материалов

Материал

Е, МПа

G, МПа

ц

Сталь

210 000

82 031

0,28

Медь листовая

113 000

42 164

0,34

Латунь

97 000

34 155

0,42

Цинк

82 000

32 283

0,27

Алюминий

68 000

25 564

0,33

Свинец

17 000

5862

0,45

растяжения может проявляться небольшой горизонтальный участок, который называют площадкой текучести (АЛ‘ на рис. 3.3, а). На этой стадии деформации в действие включаются новые источники дислокаций, происходят их спонтанное размножение и лавинообразное распространение по плоскостям скольжения. Макроскопическим проявлением этих процессов является образование на рабочей поверхности образца узких полос скольжения, получивших название линий Чернова — Людерса. Эти линии располагаются под углом приблизительно 45° к продольной оси образца по направлению действия максимальных касательных напряжений и отчетливо видны на его полированной поверхности. Однако многие металлы и сплавы деформируются при растяжении без площадки текучести.

С увеличением упругопластической деформации усилие, с которым сопротивляется образец, растет и достигает в точке В своего максимального значения. Для пластичных материалов в этот момент в наиболее слабом сечении образца образуется локальное сужение (шейка), где при дальнейшем деформировании происходит разрыв образца. На участке ОЛВ деформация распределена равномерно по всей длине образца, а на участке ВС деформация практически вся сосредоточена в зоне шейки.

При растяжении определяют следующие показатели прочности и пластичности материалов.

Показатели прочности материалов характеризуются удельной величиной — напряжением, равным отношением нагрузки в характерных точках диаграммы растяжения к площади поперечного сечения образца. Дадим определение наиболее часто используемым показателям прочности материалов.

Предел текучести (физический) (ат, МПа) — это наименьшее напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки:

где Р1 — нагрузка, соответствующая площадке текучести на диаграмме растяжения (см. рис. 3.3, а).

Если па машинной диаграмме растяжения нет площадки текучести (см. рис. 3.3, б)у то задаются допуском на остаточную деформацию образца и определяют условный предел текучести.

Условный предел текучести (a0i2, МПа) — это напряжение, при котором остаточное удлинение достигает 0,2% от начальной расчетной длины образца[1]:

где Р0 2 — нагрузка, соответствующая остаточному удлинению A/q 2 = 0,002/0.

Временное сопротивление (предел прочности) (ав, МПа) — это напряжение, соответствующее наибольшей нагрузке Ршах, предшествующей разрыву образца:

Истинное сопротивление разрыву (5К, МПа) — это напряжение, определяемое отношением нагрузки Рк в момент разрыва к площади поперечного сечения образца в месте разрыва Рк:

где

Показатели пластичности. Пластичность — одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Дадим определение наиболее часто используемым показателям пластич11ости матерналов.

Относительное предельное равномерное удлинение (8р, %) — это наибольшее удлинение, до которого образец деформируется равномерно по всей его расчетной длине, или, другими словами, это отношение абсолютного приращения расчетной длины образца AL до нагрузки Ртах к ее первоначальной длине /о (см. рис. 3.3, а):

Аналогично предельному равномерному удлинению существует относительное предельное равномерное сужение (|/р, %):

где Рр= ndp/4 — площадь поперечного сечения образца, соответствующая Ртах.

Из условия постоянства объема образца при растяжении можно получить связь между ц/р и 5р в относительных значениях (безразмерном виде):

При разрушении образца на две части определяют конечные показатели пластичности: относительное удлинение и относительное сужение образца после разрыва.

Относительное удлинение после разрыва (8, %) — это отношение приращения расчетной длины образца после разрыва А/к к ее первоначальной длине:

Относительное удлинение после разрыва зависит от соотношения /0 и (/0, г.е. от кратности образцов. Чем меньше отношение Iq/Fq и кратность образца, тем больше 8. Это объясняется влиянием шейки образца, где имеет место сосредоточенное удлинение. Поэтому индекс у 8 указывает на кратность образца1, например 85, 810.

Относительное сужение после разрыва (|/, %) — это отношение уменьшения площади поперечного сечения образца в месте разрыва AFK к начальной площади поперечного сечения:

В отличие от конечного относительного удлинения конечное относительное сужение не зависит от соотношения Iq и Fq (кратности образца), так как в последнем случае деформацию оценивают в одном, наиболее узком, сечении образца.

Диаграммы условных и истинных напряжений и деформаций. Протяженность первичных диаграмм растяжения вдоль осей координат Р и А/ зависит от абсолютных размеров образцов. При постоянной кратности образца чем больше его длина и площадь поперечного сечения, тем выше и протяженнее первичная диаграмма растяжения. Однако если эту диаграмму представить в относительных координатах, то диаграммы для образцов одной кратности, но разных размеров будут одинаковы. Так, если по оси ординат откладывать условные напряжения а, равные отношению нагрузки Р к начальной площади поперечного сечения Fq, а по оси абсцисс — условные удлинения 8, равные отношению абсолютного приращения длины образца А/ к его начальной длине /0, то диаграмму называют диаграммой условных напряжений и деформаций (или просто условной диаграммой). На рис. 3.4, а схематически представлена условная диаграмма «а — 8». На этой диаграмме отмечены условный предел текучести сто,2> временное сопротивление ств, конечное условное напряжение ак, условное предельное равномерное удлинение 8р и условное относительное удлинение после разрыва 8К.

Однако более объективную информацию можно получить, если диаграмму растяжения представить в других координатах: «S — г». Истинное напряжение S определяется как отношение текущей на- [2]

Рис. 3.4. Схемы условной (а) и истинной (6) диаграмм растяжения пластичных материалов

грузки Р к текущей площади поперечного сечения F, которое непрерывно уменьшается в процессе растяжения:

Истинное удлинение г учитывает непрерывно изменяющуюся длину образца в процессе его растяжения, и поэтому его можно определить как сумму бесконечно малых относительных деформаций (II/I при переменном /:

Диаграмму в координатах «S — е» называют диаграммой истинных напряжений и деформаций (или просто истинной диаграммой). На истинной диаграмме, как и на условной, можно найти характерные точки, соответствующие истинному пределу текучести[3]5о,2> истинному временному сопротивлению 5В, истинному сопротивлению разрыву 5К, а также истинному предельному равномерному удлинению ?р и истинному конечному удлинению гк (рис. 3.4, б).

Значения предела текучести ат (а02), временного сопротивления а„, предельного равномерного удлинения 8р, истинного сопротивления разрыву 5К, относительных удлинения 85 и сужения у после разрыва для некоторых марок стали представлены в табл. 3.2.

Источник