Физика задачи на растяжение

Физика задачи на растяжение thumbnail

Можно не знать закон Ома и сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал.

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.

Простейшие деформации – деформации растяжения и сжатия.

Закон Гука:

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Физика задачи на растяжение

Коэффициент k – жесткость материала. 

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

Физика задачи на растяжение
 
S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Физика задачи на растяжение

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1.  Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

Физика задачи на растяжение

По третьему закону Ньютона:

Физика задачи на растяжение

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

Физика задачи на растяжение

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Физика задачи на растяжение

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

Физика задачи на растяжение

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Физика задачи на растяжение

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Физика задачи на растяжение

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Физика задачи на растяжение

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в профессиональный студенческий сервис.

Автор

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Подробности

Просмотров: 893

«Физика — 10 класс»

При решении задач по этой теме надо иметь в виду, что закон Гука справедлив только при упругих деформациях тел. Сила упругости не зависит от того, какая происходит деформация: сжатия или растяжения, она одинакова при одинаковых Δl. Кроме этого, считается, что сила упругости вдоль всей пружины одинакова, так как масса пружины обычно не учитывается.

Задача 1.

При помощи пружинного динамометра поднимают с ускорением а = 2,5 м/с2, направленным вверх, груз массой m = 2 кг. Определите модуль удлинения пружины динамометра, если её жёсткость k = 1000 Н/м.

Физика задачи на растяжение

Р е ш е н и е.

Согласно закону Гука, выражающему связь между модулем внешней силы Физика задачи на растяжение, вызывающей растяжение пружины, и её удлинением, имеем F = kΔl. Отсюда Физика задачи на растяжение

Для нахождения силы Физика задачи на растяжение воспользуемся вторым законом Ньютона. На груз, кроме силы тяжести mФизика задачи на растяжение, действует сила упругости пружины, равная по модулю F и направленная вертикально вверх. Согласно второму закону Ньютона mФизика задачи на растяжение = F + mФизика задачи на растяжение.

Направим ось OY вертикально вверх так, чтобы пружина была расположена вдоль этой оси (рис. 3.16). В проекции на ось OY второй закон Ньютона можно записать в виде mау = Fy + mgy

Читайте также:  Предел прочности на растяжение при изгибе гост

Так как ау = a, gy = -g и Fy = F, то F = mа + mg = m(а + g).

Следовательно,

Физика задачи на растяжение

Задача 2.

Определите, как изменяется сила натяжения пружины, прикреплённой к бруску массой m = 5 кг, находящемуся неподвижно на наклонной поверхности, при изменении угла наклона от 30° до 60°. Трение не учитывайте.

Физика задачи на растяжение

Р е ш е н и е.

На брусок действуют сила тяжести, сила натяжения пружины и сила реакции опоры (рис. 3.17).

Условие равновесия бруска: mФизика задачи на растяжение + Физика задачи на растяжение + Физика задачи на растяжениеyпp = 0.

Запишем это условие в проекциях на оси ОХ и OY: Физика задачи на растяжение

Из первого уравнения системы получим Fyпp = mg sinα.

При изменении угла наклона изменение силы упругости найдём из выражения ΔFyпp = mg(sinα2 — sinα1) = 5 • 10 • (0,866 — 0,5) (Н) = 18,3 Н.

Задача 3.

К потолку подвешены последовательно две невесомые пружины жёсткостями 60 Н/м и 40 Н/м. К нижнему концу второй пружины прикреплён груз массой 0,1 кг. Определите жёсткость воображаемой пружины, удлинение которой было бы таким же, как и двух пружин при подвешивании к ней такого же груза (эффективную жёсткость).

Физика задачи на растяжение

Р е ш е н и е.

Так как весом пружин можно пренебречь, то очевидно, что силы натяжения пружин равны (рис. 3.18). Тогда согласно закону Гука

Fynp1 = Fупр2; k1x1 = k2х2.         (1)

На подвешенный груз действуют две силы — сила тяжести и сила натяжения второй пружины.

Условие равновесия груза запишем в виде mg = k2х2.

Из этого уравнения найдём удлинение

Физика задачи на растяжение

Подставив выражение для х2 в уравнение (1), получим для удлинения

Физика задачи на растяжение

Определим теперь эффективную жёсткость. Запишем закон Гука для воображаемой пружины:

Физика задачи на растяжение

Подставив в формулу (2) выражения для удлинений x1 и х2 пружин, получим

Физика задачи на растяжение

Для эффективной жёсткости получим выражение

Физика задачи на растяжение

Задача 4.

Через блок, закреплённый у края стола, перекинута нерастяжимая нить, к концам которой привязаны брусок массой m1 = 1 кг, находящийся на горизонтальной поверхности стола, и пружина жёсткостью k = 50 Н/м, расположенная вертикально. Ко второму концу пружины привязана гиря массой m2 = 200 г (рис. 3.19). Определите удлинение пружины при движении тел. Силу трения, массы пружины, блока и нити не учитывайте.

Физика задачи на растяжение

Р е ш е н и е.

На брусок действуют сила тяжести, сила реакции опоры и сила натяжения нити.

На гирю действуют сила тяжести и сила натяжения пружины.

Согласно второму закону Ньютона для бруска и гири запишем:

m1Физика задачи на растяжение1 = m1Физика задачи на растяжение + Физика задачи на растяжение + Физика задачи на растяжение;

m2Физика задачи на растяжение2 = mФизика задачи на растяжение + Физика задачи на растяжениеупр.

В проекциях на выбранные оси координат запишем: на ось ОХ: m1а1 = Т;

на ось OY:

Физика задачи на растяжение

Так как нить нерастяжима, то модули ускорений равны: а1 = а2 = а.

В силу условия малых масс пружины, нити и блока можно записать: T2 = Fупр и Т1 = Т2 = Т.

Учтя последние равенства, систему уравнений (1) запишем в виде

Физика задачи на растяжение

Выразив ускорение из первого уравнения системы и подставив его во второе, получим

Физика задачи на растяжение

Из этого уравнения найдём силу натяжения нити:

Физика задачи на растяжение

Так как согласно закону Гука Fупр = kx, то

Физика задачи на растяжение

Тогда удлинение пружины

Физика задачи на растяжение

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика — Физика, учебник для 10 класса — Класс!ная физика

Основное утверждение механики —
Сила —
Инертность тела. Масса. Единица массы —
Первый закон Ньютона —
Второй закон Ньютона —
Принцип суперпозиции сил —
Примеры решения задач по теме «Второй закон Ньютона» —
Третий закон Ньютона —
Геоцентрическая система отсчёта —
Принцип относительности Галилея. Инвариантные и относительные величины —
Силы в природе —
Сила тяжести и сила всемирного тяготения —
Сила тяжести на других планетах —
Примеры решения задач по теме «Закон всемирного тяготения» —
Первая космическая скорость —
Примеры решения задач по теме «Первая космическая скорость» —
Вес. Невесомость —
Деформация и силы упругости. Закон Гука —
Примеры решения задач по теме «Силы упругости. Закон Гука» —
Силы трения —
Примеры решения задач по теме «Силы трения» —
Примеры решения задач по теме «Силы трения» (продолжение) —

Источник

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

Читайте также:  Чем можно помазать при растяжении

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Уровень А

1. Какого вида деформации испытывают при нагрузке:

а) ножка скамейки;

б) сиденье скамейки;

в) натянутая струна гитары;

г) винт мясорубки;

д) сверло;

е) зубья пилы?

Решение

2. С какой деформацией (упругой или пластической) имеют дело при лепки фигур с глины, пластилина?

Читайте также:  Растяжение и сжатие эпюры и балки

Решение

3. Проволока длиной 5,40 м под действием нагрузки удлинилась до 5,42 м. Определите абсолютное удлинение проволоки.

Решение

4. При абсолютном удлинении на 3 см длина пружины стала равной 27 см. Определите ее начальную длину, если пружину:

а) растянули;

б) сжали.

Решение

5. Абсолютное удлинение проволоки длиной 40 см равно 2,0 мм. Определите относительное удлинение проволоки.

Решение

6. Абсолютное и относительное удлинение стержня равны 1 мм и 0,1% соответственно. Определите длину недеформированного стержня?

Решение

7. При деформации стержня сечением 4,0 см2 сила упругости равна 20 кН. Определите механическое напряжение материала.

Решение

8. Определите модуль силы упругости в деформированном стержне площадью 4,0 см2, если при этом возникает механическое напряжение 1,5·108 Па.

Решение

9. Найдите механическое напряжение, возникающее в стальном тросе при его относительном удлинении 0,001.

Решение

10. При растяжении алюминиевой проволоки в ней возникло механическое напряжение 35 МПа. Найдите относительное удлинение.

Решение

11. Чему равен коэффициент жесткость пружины, которая удлиняется на 10 см при силе упругости 5,0 H?

Решение

12. На сколько удлинилась пружина жесткостью 100 Н/м, если сила упругости при этом равна 20 Н?

Решение

13. Определите максимальную силу, которую может выдержать стальная проволока, площадь поперечного сечения которой 5,0 мм2.

Решение

14. Берцовая кость человека выдерживает силу сжатия 50 кН. Считая предел прочности кости человека равным 170 МПа, оцените среднюю площадь поперечного сечения берцовой кости.

Решение

Уровень B

1. Какая колба выдержит большее давление снаружи – круглая или плоскодонная?

Решение

2. Для чего рама велосипеда делается из полых трубок, а не сплошных стержней?

Решение

3. При штамповке детали иногда предварительно нагревают (горячая штамповка). Для чего это делают?

Решение

4. Укажите направление сил упругости, действующих на тела в указанных точках (рис. 1).

  • Физика задачи на растяжение

    а

  • Физика задачи на растяжение

    б

  • Физика задачи на растяжение

    в

  • Физика задачи на растяжение

    г

  • Физика задачи на растяжение

    д

Рис. 1

Решение

5. Почему нет таблиц для коэффициента жесткости тела k, вроде таблиц для плотности вещества?

Решение

6. При какой кладке кирпичей (рис. 2) нижний из кирпичей окажется под большим напряжением?

Физика задачи на растяжение

Рис. 2

Решение

7. Сила упругости – сила переменная: она изменяется от точки к точке по мере удлинения. А как ведет себя ускорение, вызванное этой силой?

Решение

8. К закрепленной одним концом проволоке диаметром 2,0 мм подвешен груз массой 10 кг. Найдите механическое напряжение в проволоке.

Решение

9. На две вертикальные проволоки, диаметры которых отличаются в 3 раза, прикрепили одинаковые грузики. Сравните возникающие в них напряжения.

Решение

10. На рис. 3 дан график зависимости напряжения, возникающего в бетонной свае, от ее относительного сжатия. Найдите модуль упругости бетона.

Физика задачи на растяжение

Рис. 3

Решение

11. Проволока длиной 10 м с площадью сечения 0,75 мм2 при растяжении силой 100 Н удлинилась на 1,0 см. Определите модуль Юнга для материала проволоки.

Решение

12. С какой силой нужно растягивать закрепленную стальную проволоку длиной 1 м с площадью сечения 0,5 мм2, чтобы удлинить ее на 3 мм?

Решение

13. Определите диаметр стальной проволоки длиной 4,2 м, чтобы при действии продольной растягивающей силы, равной 10 кН, ее абсолютное удлинение было равно 0,6 см?

Решение

14. Определите по графику (рис. 4) коэффициент жесткости тела.

Физика задачи на растяжение

Рис. 4

Решение

15. По графику зависимости изменения длины резинового жгута от приложенной к нему силы найдите жесткость жгута (рис. 5).

Физика задачи на растяжение

Рис. 5

Решение

16. Постройте график зависимости силы упругости, возникающей в деформированной пружине Fупр = fl), от ее удлинения, если жесткость пружины 200 Н/м.

Решение

17. Постройте график зависимости удлинения пружины от приложенной силы Δl = f(F), если коэффициент жесткости пружины 400 Н/м.

Решение

18. Закон Гука для проекции силы упругости пружины имеет вид Fx = –200 х. Чему равна проекция силы упругости, если при удлинении пружины из недеформированного состояния проекция перемещения конца пружины на ось Х составляет 10 см?

Решение

19. Два мальчика растягивают резиновый жгут, прикрепив к его концам динамометры. Когда жгут удлинился на 2 см, динамометры показывали силы по 20 Н каждый. Что показывают динамометры при растяжении жгута на 6 см?

Решение

20. Две пружины равной длины, соединенные последовательно, растягивают за свободные концы руками. Пружина жесткостью 100 Н/м удлинилась на 5 см. Какова жесткость второй пружины, если ее удлинение равно 1 см?

Решение

21. Пружина изменила свою длину на 6 см, когда к ней подвесили груз массой 4 кг. На сколько бы она изменила свою длину под действием груза массой 6 кг?

Решение

22. На двух проволоках, одинаковой жесткости, длиной 1 и 2 м подвешены одинаковые грузы. Сравните абсолютные удлинения проволок.

Решение

23. Диаметр капроновой рыболовной лески 0,12 мм, а разрывная нагрузка 7,5 Н. Найдите предел прочности на разрыв данного сорта капрона.

Решение

24. При каком наибольшем диаметре поперечного сечения стальная проволока под действием силы в 7850 Н разорвется?

Решение

25. Люстру массой 10 кг нужно подвесить на проволоке сечением не более 5,0 мм2. Из какого материала следует взять проволоку, если необходимо обеспечить пятикратный запас прочности?

Решение

Уровень С

1. Если к вертикально расположенному динамометру прикрепить деревянный брусок массой 200 г, то показание динамометра окажется таким, как показано на рисунке 1. Определите ускорение, с которым начнет двигаться тот же брусок, если его оттянуть так, что пружина удлинится еще на 2 см, а затем брусок отпустить.

Физика задачи на растяжение

Рис. 1

Решение

Источник