Жесткость при растяжении и сжатии это

Жесткость при растяжении и сжатии это thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Жесткость при растяжении и сжатии это

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Читайте также:  Пружины на растяжение с кольцами

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

При расчете на растяжение или сжатие одного элемента конструкции можно считать уже определенными сочетание нагрузок (р = 1) и уровень надежности (у„ = 1). Тогда условие прочности (5.20) для случая растяжения (сжатия) можно записать в виде

Жесткость при растяжении и сжатии это

или

С помощью выражения (5.23) могут быть решены задачи следующих трех типов.

  • 1. Расчет на прочность существующей конструкции или ее элемента с определенными размерами и известной нагрузкой. При этом определяют напряжения в расчетном сечении и сравнивают их с расчетным сопротивлением по формуле (5.23). Задачи этого типа называют поверочным расчетом.
  • 2. Определение предельной нагрузки на конструкцию или ее элемент. При этом по формуле (5.22) определяют значение предельной продольной силы и по ней — действующую нагрузку. Задачи этого типа называют определением грузоподъемности.
  • 3. Определение размеров поперечного сечения элемента конструкции при известном материале и действующей нагрузке:

Жесткость при растяжении и сжатии это

Задачи этого типа называют подбором сечений.

При расчете по второй группе предельных состояний условие жесткости (5.21) при растяжении (сжатии) с учетом (5.10) в общем случае принимает вид

Жесткость при растяжении и сжатии это

а в случае действия одной силы на стержень постоянного сечения

Жесткость при растяжении и сжатии это

где [Д/] — допускаемое изменение длины стержня при действии нормативных нагрузок.

Рассмотрим несколько примеров расчета стержней на прочность и жесткость при растяжении и сжатии.

Пример 5.6

Требуется определить допускаемую нагрузку [ /•’] на кирпичный столб сечением 64 х 64 см (2,5 х 2,5 кирпича) и высотой Н= 2,4 м из условия прочности кладки на сжатие. Расчетное сопротивление кладки Л = 1,15 МПа, плотность у = 17,65 кН/м3, коэффициент условия работы ус = 1,0.

Решение. 1. Площадь поперечного сечения столба Лш = 0,64 • 0,64 = 0,4096 м2.

  • 2. Наибольшая сжимающая сила в основании столба N= [Т| + уАН= [Т| + 17,65 • 0,4096 • 2,4 = F + 17,35 кН.
  • 3. На основании условия (5.22) имеем N=[F+ 17,35
Читайте также:  Лечение при растяжении сетчатки глаза

[F]

Пример 5.7

Требуется определить допускаемую нагрузку [F] на балку (рис. 5.17, а), поддерживаемую стальными тягами 1 и 2 (см. рис. 5.17, а), из условий ограничения вертикального перемещения балки на величину не более чем [Д/] = //2000 = 0,25 см и прочности. Стальные тяги диаметром d = 20 мм изготовлены из стали марки С285. Расчетное сопротивление R,. = 280 МПа (см. прил. 2), модуль упругости Е = 2,06 • 105 МПа = 2,06 • 10® кПа (см. прил. 1). Коэффициент условия работы ус = 1,0, коэффициент надежности по нагрузке уг = 1,1.

Решение. 1. Проведем сечение по тягам 1 и 2 (рис. 5.17, б) и, приведя распределенную нагрузку к равнодействующей Rq = ql= 5q, определим из условий равновесия усилия в тягах, выраженные через значение нагрузки q.

ША = 0; 2,5q- 2,5 — Щ • 5 = 0, N2 = 3,25q.

Lv/B = 0; TV, — 5 — 2,5q • 2,5 = 0, /V, = 4,25q > N2,

JV) > iV2, значит удлинение стержня 1 будет больше удлинения стержня 2.

Жесткость при растяжении и сжатии это

Рис. 5.17

  • 2. Площадь сечения стержней тяги Ant= кг2 = п ? 0,012 = 3,14 • 10-4 м2.
  • 3. Жесткость тяги ЕА = 2,06 • 108 • 3,14 • 10″4 = 6,47 • 104 кН.
  • 4. Удлинение тяги 1 согласно формуле (5.9)

А/, = ЛУ, / ЕА- 4,25*7 • 2/6,47 • 104 = 1,314*7 • 10 4 м.

На основании (5.26) можем записать:

А/, = 1,314*7 • 104

откуда допускаемое значение распределенной нагрузки будет 1*7] = 0,0025/1,314 • 10-4 = 19 кН/м, а значение сосредоточенной силы (по условию задачи)

[F] = 0,5*7/ =0,5- 19 -5 = 47,5 кН.

5. Расчетные значения нагрузок:

F = [F] У/ = 47,5 • 1,1 = 52,25 кН;

*7 = [Уу = 19 • 1,1 = 20,9 кН/м.

  • 6. Значение продольной силы в тяге 1 при полученном значении нагрузки N{ = 4,25*7 = 4,25 • 20,9 = 88,83 кН.
  • 7. Нормальное напряжение в тяге 1

а = Nx/A = 88,83/3,14 • 10 4 = 281,2 • 103 кПа,

т.е. условие прочности (5.23) выполняется, так как а = 281,2 МПа Rlf = 285 МПа.

Пример 5.8

Требуется определить сторону а квадратного сечения деревянного подкоса 1 (рис. 5.18, а). Расчетное сопротивление на сжатие вдоль волокон (сосна) Rc = 14 МПа (прил. 4). Коэффициент условия работы ус = 1,0.

Жесткость при растяжении и сжатии это

Рис. 5.18

Решение. 1. Удалим стержень 1 и заменим его действие усилием Лг, (рис. 5.18, 6). Плечо до силы ЛГ, из точки С h = 1 • cos45° = 0,7071 м.

Величину усилия найдем из уравнения

  • ?Л/ПРАВ = 0; 40-2 +N, 0,7071 = 0, Nx =-113,14 кН (сжатие).
  • 2. Требуемая площадь поперечного сечения согласно (5.24)

Аф = а? > ЛГ, / (Rc yc) = 113,4/(14000 ? 1) = 0,0081 м2,

откуда а = ^0,0081 = 0,09 м. Принимаем а = 9 см.

Пример 5.9

Требуется проверить прочность ступенчатого стержня (рис. 5.19, а). Материал — чугун марки СЧ15. Расчетные сопротивления (см. ирил. 4) на сжатие и растяжение соответственно R(. = 160 МПа и R{ = 55 МПа.

Жесткость при растяжении и сжатии это

Рис. 5.19

Решение. 1. Определим горизонтальную опорную реакцию в точке А.

Хх = 0; -НА + 65 — 40 = 0, НА = 25 кН.

  • 2. Назначим расчетные участки бруса. Границами расчетных участков будут места ступенчатого изменения сечения бруса и точки приложения внешних нагрузок. Таким образом, для бруса имеем три расчетных участка (рис. 5.19, б).
  • 3. Определяем продольные силы в поперечных сечениях бруса и строим эпюру N.

Участок 1. N = Х.РЛЕВ= 25 кН.

Участок 2. N2= 5>ев = 25 — 65 = -40 кН.

Участок 3. N3= N2 = -40 кН.

Эпюра продольных сил N, построенная по полученным данным, показана на рис. 5.19, в.

4. Площади поперечных сечений стержня по участкам:

А, =А2= л ? 0.0152= 7,07 ? 10-4 м2; А3= л • 0,012 = 3,14 • 12.

5. Определим нормальные напряжения на расчетных участках и построим эпюру напряжений о.

Участок 1.ai=Ni/Al = 25/7,07- 10 4 = 3,536- 10’* кН/м2 = 35,36 МПа.

Участок 2. а, = N2/A2 = -40/7,07 10 4 = -5,658 • 104 кН/м2 = -56,58 МПа.

Участок 3. ст3 = N3/A3= -40/3,14 1 0 4 = -12,739104 кН/м2 = -127,39 МПа.

Эпюра напряжений ст показана на рис. 5.19, г.

6. Как видно из построенной эпюры напряжений, проверке прочности подлежат сечения на первом (на растяжение) и третьем (па сжатие) участках, для которых

Читайте также:  Задачи на сжатие и растяжение графиков

су 1 = 35,36 МПа 55 МПа; а3 = 127,39 Mila Rc = 160 Mila.

Таким образом, условия прочности для рассматриваемого стержня выполняются.

Источник

Деформации продольные и поперечные. Коэффициент поперечной деформации (коэффициент Пуассона). Закон Гука. Модуль упругости.

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl, которая называется абсолютным удлинением,и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией. В данном случае относительная деформация называется продольной деформацией, а — относительной поперечной деформацией. Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона: (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

, (3.2)

где Е — коэффициент пропорциональности, называемый модулем нормальной упругости.

Если мы в формулу закона Гука подставим выражение и , тo получим формулу для определения удлинения или укорочения при растяжении и сжатии:

, (3.3)

где произведение ЕF называется жесткостью при растяжении, сжатии.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела(материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

{displaystyle E {stackrel {text{def}}{=}} {frac {dsigma }{dvarepsilon }}}

где:

· E — модуль упругости;

· {displaystyle sigma } — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы);

· {displaystyle varepsilon } — упругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру).

Определение осевых перемещений поперечных сечений. Жесткость при растяжении и сжатии.

Растяжениемилисжатиемназывают такой вид деформации бруса (стержня), при котором в его поперечных сечениях возникает только продольная сила N.

Продольной силойв поперечном сечении бруса называется равнодействующая внутренних нормальных сил , возникающих в этом сечении.

При сжатии сравнительно длинного и тонкого бруса прямолинейная форма его равновесия может оказаться неустойчивой.

жесткость сечения бруса при растяжении (сжатии) — Произведение модуля продольной упругости иплощади поперечного сечения. Характеризует жесткость бруса при растяжении (сжатии).

3. Диаграммы растяжения и ее характерные параметры: пределы пропорциональности, упругости, текучести, прочности. Истинная диаграмма растяжения.

Диаграмма растяжения

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

Диаграмму ~ условно делят на четыре области:

Iзона упругости. Здесь материал подчиняется закону Гука.

IIзона общей текучести. Здесь происходит существенное удлинение образца без заметного увеличения нагрузки. Кривая АВ называется площадкой текучести.

IIIзона упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более медленным, чем на упругом участке.

Процесс предварительного деформирования называют наклепом.

IVзона местной текучести (зона разрушения). Здесь начинает появляться место сужения – шейка.

На диаграмме растяжения отмечают характерные напряжения:

предел пропорциональности – напряжение, до которого выполняется закон Гука;

предел упругости – наибольшее напряжение, до которого материал не получает остаточной деформации;

предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

предел прочности – отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения.

Дата добавления: 2018-10-15; просмотров: 2052 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник