Зависимость силы упругости от степени растяжения пружины

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: силы в механике, сила упругости, закон Гука.

Как мы знаем, в правой части второго закона Ньютона стоит равнодействующая (то есть векторная сумма) всех сил, приложенных к телу. Теперь нам предстоит изучить силы взаимодействия тел в механике. Их три вида: сила упругости, гравитационная сила и сила трения. Начинаем с силы упругости.

Деформация.

Силы упругости возникают при деформациях тел. Деформация — это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости — это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример — сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука.

Деформация называется малой, если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука. Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где — коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1) следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1 ):

Зависимость силы упругости от степени растяжения пружины
Рис. 1. Закон Гука

Коэффициент жёсткости — о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

,

где — угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1 — это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга.

В частном случае малых деформаций стержней имеется более детальная формула, уточняющая общий вид ( 1 ) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

.

Здесь — модуль Юнга материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

Источник

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Читайте также:  Упражнения на растяжение и укрепление мышц бедра

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

Зависимость силы упругости от степени растяжения пружины

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

ℓ0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

Зависимость силы упругости от степени растяжения пружины — единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

Зависимость силы упругости от степени растяжения пружины

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Зависимость силы упругости от степени растяжения пружины

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Зависимость силы упругости от степени растяжения пружины

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Зависимость силы упругости от степени растяжения пружины

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Зависимость силы упругости от степени растяжения пружины

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

Зависимость силы упругости от степени растяжения пружины

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

Зависимость силы упругости от степени растяжения пружины

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Источник



Главная 
 Онлайн учебники 
 База репетиторов России 
 Тренажеры по физике 
 Подготовка к ЕГЭ 2017 онлайн

Глава 1. Механика

Силы в природе

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Рисунок 1.12.1.

Деформация растяжения (

x > 0

) и сжатия (

x < 0

). Внешняя сила

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2.

Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Читайте также:  Какую мазь использовать при растяжении мышц шеи
Зависимость силы упругости от степени растяжения пружины

Модель.
Закон Гука





Источник

ПРАКТИЧЕСКИЕ РАБОТЫ ПО ОГЭ ФИЗИКА 9 КЛАСС.

1. Определение частоты свободных колебаний нитяного маятника

Используя штатив с муфтой и лапкой, груз с прикреплённой к нему нитью, метровую линейку и секундомер, соберите экспериментальную установку для исследования свободных колебаний нитяного маятника. Определите время 30 полных колебаний и посчитайте частоту колебаний для случая, когда длина нити равна 1 м.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчёта частоты колебаний;

3) укажите результаты прямых измерений числа колебаний и времени колебаний;

4) запишите численное значение частоты колебаний маятника.

Образец возможного выполнения

hello_html_74eb54ce.jpg

2. Зависимость силы упругости от степени растяжения пружины

Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и набор из трёх грузов, соберите экспериментальную установку для исследования зависимости силы упругости, возникающей в пружине, от степени растяжения пружины. Определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) укажите результаты измерения веса грузов и удлинения пружины для трёх случаев в виде таблицы (или графика);

3) сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от степени растяжения пружины.

Образец возможного выполнения

hello_html_176508fd.jpg

3.. Определение жесткости пружины

Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой, пружину, динамометр, линейку и два груза. Соберите экспериментальную установку для определения жесткости пружины. Определите жесткость пружины, подвесив к ней два груза. Для определения веса грузов воспользуйтесь динамометром.

При выполнении задания:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета жесткости пружины;

3) укажите результаты измерения веса грузов и удлинения пружины;

4) запишите численное значение жесткости пружины.

Образец возможного выполнения

hello_html_m1ff1b47c.jpg

4. Зависимость периода свободных колебаний нитяного маятника от длины

Используя штатив с муфтой и лапкой, шарик с прикрепленной к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити. Определите время для 30 полных колебаний и посчитайте период колебаний для трех случаев, когда длина нити равна соответственно 1 м, 0,5 м и 0,25 м.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) укажите результаты прямых измерений числа колебаний и времени колебаний для трех длин нити маятника в виде таблицы;

3) посчитайте период колебаний для каждого случая и результаты занесите в таблицу;

4) сформулируйте качественный вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.

Образец возможного выполнения

hello_html_m790af985.jpg

5. Измерение коэффициента трения скольжения

Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для измерения коэффициента трения скольжения между кареткой и поверхностью рейки.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета коэффициента трения скольжения;

3) укажите результаты измерения веса каретки с грузом и силы трения скольжения при движении каретки с грузом по поверхности рейки;

4) запишите числовое значение коэффициента трения скольжения.

Образец возможного выполнения

hello_html_1edbb19b.jpg

6. Зависимость периода свободных колебаний пружинного маятника от массы груза

Используя штатив с муфтой и лапкой, пружину, набор грузов и секундомер, соберите экспериментальную установку для исследования свободных колебаний пружинного маятника. Определите время для 20-30 полных колебаний и вычислите период колебаний для грузов различных масс.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) измерьте длительность 20-30 полных колебаний для грузов трех различных масс, результаты представьте в виде таблицы;

3) вычислите период колебаний для каждого случая, результаты округлите до сотых долей секунды и занесите в таблицу;

4) сформулируйте вывод о зависимости периода свободных колебаний пружинного маятника от массы груза.

Образец возможного выполнения

hello_html_634cbce3.jpg

7. Определение момента силы, приложенной к рычагу

Используя рычаг, три груза, штатив и динамометр, соберите установку для исследования равновесия рычага. Три груза подвесьте слева от оси вращения рычага следующим образом: два груза на расстоянии 6 см и один груз на расстоянии 12 см от оси. Определите момент силы, которую необходимо приложить к правому концу рычага на расстоянии 6 см от оси вращения рычага для того, чтобы он оставался в равновесии в горизонтальном положении. 

В бланке ответов:

1) зарисуйте схему экспериментальной установки;

2) запишите формулу для расчета момента силы;

3) укажите результаты измерений приложенной силы и длины плеча;

4) запишите числовое значение момента силы.

Образец возможного выполнения

hello_html_m11e9e5bc.jpg

8. Определение плотности

Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр, соберите экспериментальную установку для измерения плотности материала, из которого изготовлен цилиндр. 

В бланке ответов:

1) сделайте рисунок экспериментальной установки для определения объема тела;

2) запишите формулу для расчета плотности;

3) укажите результаты измерения массы цилиндра и его объема;

4) запишите числовое значение плотности материала цилиндра.

Образец возможного выполнения

hello_html_m240487e6.jpg

9. Измерение выталкивающей силы

Соберите экспериментальную установку для измерения выталкивающей силы.

В бланке ответов:

1) нарисуйте схему эксперимента;

2) запишите формулу для расчета выталкивающей силы;

3) укажите результаты измерения;

4) запишите численное значение выталкивающей силы.

Образец возможного выполнения

hello_html_m7b2928cd.jpg

10. Работа силы трения

Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для измерения работы силы трения скольжения при движении каретки с грузами по поверхности рейки на расстояние в 40 см.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета работы силы трения скольжения;

3) укажите результаты измерения модуля перемещения каретки с грузами и силы трения скольжения при движении каретки с грузами по поверхности рейки;

4) запишите числовое значение работы стлы трения скольжения.

Образец возможного выполнения

hello_html_d4b489d.jpg

11. Исследование зависимости силы трения скольжения от силы нормального давления

Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для исследования зависимости силы трения скольжения от силы нормального давления.

В бланке ответов:

Читайте также:  Растяжение связки голеностопного сустава

1) нарисуйте схему эксперимента;

2) запишите формулу для расчета силы трения скольжения;

3) укажите результаты измерения;

4) сформулируйте вывод о зависимости силы трения скольжения от силы нормального давления.

Образец возможного выполнения

hello_html_m5b668ace.jpg

12. Измерение периода свободных колебаний нитяного маятника

Используя штатив с муфтой и лапкой, груз с прикрепленной к нему нитью, метровую линейку и секундомер, соберите экспериментальную установку для исследования периода свободных колебаний нитяного маятника. Определите время для 30 полных колебаний и посчитайте период колебаний для случая, когда длина нити равна 1 м.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета периода колебаний;

3) укажите результаты прямых измерений числа колебаний и времени колебаний;

4) запишите численное значение периода колебаний маятника.

Образец возможного выполнения

hello_html_2620f3a2.jpg

13. Определение работы силы упругости при подъеме груза с помощью неподвижного блока

Используя штатив с муфтой, неподвижный блок, нить, три груза и динамометр, соберите экспериментальную установку для измерения работы силы упругости при равномерном подъеме грузов с использованием неподвижного блока. Определите работу, совершаемую силой упругости при подъеме грузов на высоту 20 см.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета работы силы упругости;

3) укажите результаты прямых измерений силы упругости и пути;

4) запишите числовое значение работы силы упругости.

Образец возможного выполнения

hello_html_52b5dd11.jpg

14. Определение оптической силы линзы

Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удаленного окна.

В бланке ответов:

1) сделайте рисунок экспериментальной установки;

2) запишите формулу для расчета оптической силы линзы;

3) укажите результат измерения фокусного расстояния линзы;

4) запишите численное значение оптической силы линзы.

Образец возможного выполнения

hello_html_m9f4e42e.jpg

15. Напряжение при последовательном соединении двух проводников

Используя источник тока (4,5 В), вольтметр, ключ, соединительные провода, резисторы, обозначенные R1 и R2 , проверьте экспериментально правило для электрического напряжения при последовательном соединении двух проводников.

В бланке ответов:

1) нарисуйте электрическую схему экспериментальной установки;

2) измерьте электрическое напряжение на концах каждого из резисторов и общее напряжение на концах цепи из двух резисторов при их последовательном соединении;

3) сравните общее напряжение на двух резисторах с суммой напряжений на каждом из резисторов, учитывая, что погрешность прямых измерений с помощью лабораторного вольтметра составляет 0,2 В.

Сделайте вывод о справедливости или ошибочности проверяемого правила.

Образец возможного выполнения

hello_html_m2f1bde2b.jpg

16. Зависимость напряжения на концах проводника от силы электрического тока

Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R1, соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах.

В бланке ответов:

1) нарисуйте электрическую схему эксперимента;

2) установив с помощью реостата поочередно силу тока в цепи 0,4 А, 0,5 А и 0,6 А и измерив в каждом случае значения электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трех случаев в виде таблицы (или графика);

3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

Образец возможного выполнения

hello_html_m1203f2a.jpg

17. Определение электрического сопротивления резистора

Для выполнения этого задания используйте лабораторное оборудование: источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R1. Соберите экспериментальную установку для определения электрического сопротивления резистора. При помощи реостата установите в цепи силу тока 0,5 А.

В бланке ответов:

1) нарисуйте электрическую схему эксперимента;

2) запишите формулу для расчета электрического сопротивления;

3) укажите результаты измерения напряжения при силе тока 0,5 А;

4) запишите численное значение электрического сопротивления.

Образец возможного выполнения

hello_html_6534cdcb.jpg

18. Исследование зависимости силы электрического тока в резисторе от напряжения на его концах

Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах.

В бланке ответов:

1) нарисуйте электрическую схему эксперимента;

2) установив с помощью реостата поочередно силу тока в цепи 0,4 А, 0,5 А и 0,6 А и измерив в каждом случае значения электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трех случаев в виде таблицы (или графика);

3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

Образец возможного выполнения

hello_html_m1203f2a.jpg

19. Определение мощности электрического тока

Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, соберите экспериментальную установку для определения мощности, выделяемой на резисторе. При помощи реостата установите в цепи силу тока 0,5 А.

В бланке ответов:

1) нарисуйте электрическую схему эксперимента;

2) запишите формулу для расчета мощности электрического тока;

3) укажите результаты измерения напряжения при силе тока 0,5 А;

4) запишите численное значение мощности электрического тока.

Образец возможного выполнения

 hello_html_m64696231.jpg

20. Сила тока при параллельном соединении двух проводников

Используя источник тока (4,5 В), амперметр, ключ, соединительные провода, резисторы, обозначенные R1 и R2 , проверьте экспериментально правило для электрического напряжения при последовательном соединении двух проводников.

В бланке ответов:

1) нарисуйте электрическую схему экспериментальной установки;

2) измерьте силу тока на каждом из резисторов и общую силу тока вцепи при их параллельном соединении;

3) сравните общую силу тока в цепи с суммой сил токов на каждом из резисторов, учитывая, что погрешность прямых измерений с помощью лабораторного амперметра составляет 0,05 А. Сделайте вывод о справедливости или ошибочности проверяемого правила.

Образец возможного решения

hello_html_m5a60bb1.jpg

21. Определение работы электрического тока

Для выполнения этого задания используйте лабораторное оборудо­вание: источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор R. Соберите экспериментальную установку для измерения работы электрического тока. При помощи реостата установите в цепи силу тока 0,5 А.

В бланке ответов:

1) нарисуйте электрическую схему эксперимента;

2) запишите формулу для расчета работы электрического тока;

3) укажите результаты измерения напряжения при силе тока 0,5 А в течение 10 мин;

4) запишите численное значение работы электрического тока.

Образец возможного выполнения

hello_html_46ad6ccf.jpg

ПРАКТИЧЕСКАЯ ЧАСТЬ ОГЭ ФИЗИКА 9

Источник