Зависимость модуля силы упругости f пружины от ее растяжения x

Зависимость модуля силы упругости f пружины от ее растяжения x thumbnail

Сила – это количественная мера взаимодействия тел. В рамках классической механики мы имеем дело со следующими видами сил: силами инерции, гравитационными, электростатическими, упругими, силами трения и сопротивления. Объектами воздействия классических сил являются м.т., с.м.т., твердое тело, сплошная среда (твердое вещество, газ, жидкость).

Силы упругости, силы трения и сопротивления определяются взаимодействиеями между молекулами вещества и имеют в своей основе электромагнитное происхождение и действуют в масштабах межмолекулярных расстояний.

Закон Гука

Закон Гука применим к деформируемым объектам, возвращающимся к исходному состоянию после снятия силы. Например, для растягивающейся пружины справедлива формула силы

F = kx, (1)

где F – действующая сила,
k – коэффициент пропорциональности, или жесткость пружины,
x – растяжение пружины.

Кроме линейных объектов типа пружины, на практике встречается множество других типов деформируемых объектов, по отношению к которым можно применять закон Гука. Только в этом случае коэффициент k может быть тензором 2–го порядка соответствующей размерности. Движение при этом обратимо.

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Если после прекращения действия сил тело возвращается в прежнее состояние (деформация исчезает), то деформация называется упругой. Деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело – пластическими. Обычно деформация бывает упругой, если ее величина не превосходит определенного предела (предела упругости). Внутри такого деформированного тела возникают силы, называемые силами упругости.

Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.

Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Природа упругих сил электрическая. При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации. Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена английским физиком Гуком.

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела. Опытным путем установлено, что при малых деформациях упругая сила пропорциональна величине деформации. Например, при растяжении пружины на величину Δlупругая сила F вдоль оси пружины будет равна

F = –kΔl, (2)

где F – сила упругости;
Δl – удлинение (деформация) тела;
k – коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ – ньютон на метр (Н/м).

Знак «–» в формуле (2) указывает, что направление силы противоположно направлению деформации (при растяжении пружины сила F сжимает ее и наоборот, при сжатии растягивает).

Упругую силу принято характеризовать не ее непосредственной величиной F, а отношением F к площади поверхности S, через которую она действует. Это отношение называют напряжением. В случае, когда сила F перпендикулярна поверхности S, напряжение называют нормальным. Его обозначают σ. Напряжение измеряют в паскалях [Па]. (1 Па = 1 Н / 1 м2).

Деформацию твердых тел чаще характеризуют не абсолютным изменением длины Δl, а относительным удлинением ε (3)

где l – длина тела. ε – безразмерная величина.

При малых деформациях относительное удлинение пропорционально нормальному напряжению. Эту связь деформации и напряжения также называют законом Гука. Его принято записывать в следующей форме (4):

Коэффициент пропорциональности Е в законе Гука характеризует упругость данного материала и называется модулем (продольной) упругости (модулем Юнга). Модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза (если бы для такой большой деформации выполнялся закон Гука). Модуль упругости выражается в паскалях.

Диаграмма растяжения

Используя формулу (3), (4), по экспериментальным значениям относительного удлинения ε можно вычислить соответствующие им значения нормального напряжения σ, возникающего в деформированном теле, и построить график зависимости σ от ε. Этот график называют диаграммой растяжения. Подобный график для металлического образца изображен на рис. 1.

Рис. 1. График деформации реального тела.

На участке 0–1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения σп деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения σп, при котором еще выполняется закон Гука, называют пределом пропорциональности.

Читайте также:  Растяжение связок болит под коленом

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1–2), хотя упругие свойства тела еще сохраняются. Максимальное значение нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2–3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3–4 графика). Это явление называют текучестью материала. Нормальное напряжение σт, при котором остаточная деформация достигает заданного значения, называют пределом текучести.

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4–5 графика). Максимальное значение нормального напряжения σпр, при превышении которого происходит разрыв образца, называют пределом прочности.

Таблица 1. Пример таблицы модулей упругости металлов

—————————————————————————————-

Ссылка на мою статью Как написать формулы в статье на Дзен?

Мои странички на Дзен: https://zen.yandex.ru/id/5e036c95fc69ab00aecfe6e9

Если хотите узнать, что обозначает слово или словосочетание, в ОПЕРЕ выделите это слово(сочетание), нажмите правую клавишу мыши и выберите «Искать в …», далее — «Yandex». Если это текстовая ссылка – выделите ее, нажмите правую клавишу мыши, выберите «перейти …». Все! О-ля-ля!

Если вам понравилась статья, то поставьте «лайк» и подпишитесь на канал! Если не понравилась – все равно комментируйте и подписывайтесь. Этим вы поможете каналу. И делитесь ссылками в ваших соцсетях!

Источник



Главная 
 Онлайн учебники 
 База репетиторов России 
 Тренажеры по физике 
 Подготовка к ЕГЭ 2017 онлайн

Глава 1. Механика

Силы в природе

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Рисунок 1.12.1.

Деформация растяжения (

x > 0

) и сжатия (

x < 0

). Внешняя сила

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2.

Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Зависимость модуля силы упругости f пружины от ее растяжения x

Модель.
Закон Гука





Источник

Каждый из нас знает, что такое пружина. И мы знаем, что пружину можно удлинять или же, наоборот, укорачивать, если приложить к ней силу.

Читайте также:  Обезболивающее при растяжении для детей

Поскольку для того, чтобы удлинить или укоротить пружину, требуется усилие, логично предположить, что пружина оказывает «сопротивление» при ее деформации (растяжении или же сжатии) — в ней возникает сила. Это сила упругости FупругостиF_{упругости}Fупругости​.

Можно заметить, что чем больше мы пытаемся удлинить пружину (или чем больше укоротить ее), тем бОльшую силу приходится прикладывать к пружине. Тем большая сила упругости возникает в пружине.

Но пружины бывают разные. Некоторые легко поддаются деформации усилием человека. Некоторые — сложно. Так, например, не составляет труда сжать пружину детского пистолета на несколько сантиметров. Пружину же в амортизаторе машины сжать на те же несколько сантиметров намного сложнее. Должна существовать какая-то величина, которая отражала бы то, что пружины бывают разные. И такая величина есть: это kkk — коэффициент упругости (коэффициент жесткости, жесткость). Чем сложнее сжать пружину, тем больше kkk. То есть более жесткая пружина имеет бОльшую по величине жесткость kkk. Чем больше kkk — тем больше сила упругости, которая возникает в пружине.

Как вы думаете, как могут быть связаны сила упругости FупругостиF_{упругости}Fупругости​ (точнее, ее модуль), жесткость kkk и удлинение пружины ΔxDelta xΔx?

Fупругости=kΔxF_{упругости}=frac{k}{Delta x}Fупругости​=Δxk​

Fупругости=ΔxkF_{упругости}=frac{Delta x}{k}Fупругости​=kΔx​

Fупругости=k⋅ΔxF_{упругости}=kcdotDelta xFупругости​=k⋅Δx

Fупругости=1k⋅ΔxF_{упругости}=frac{1}{kcdotDelta x}Fупругости​=k⋅Δx1​

Наши рассуждения о влиянии удлинения (укорочения) и жесткости пружины на силу упругости закреплены в законе Гука:

Fупругости=−k⋅ΔxF_{упругости}=-kcdotDelta xFупругости​=−k⋅Δx

Здесь ΔxDelta xΔx — удлинение, kkk — коэффициент упругости (коэффициент жесткости, жесткость).

Стоит отметить, что коэффициент упругости (жесткость) kkk зависит от материала, из которого изготовлена пружина, от ее формы, толщины. При решении задач для нас важно лишь то, что каждая отдельная пружина имеет свою собственную жесткость.

Обратите внимание на то, что в формуле стоит Δx=x2−x1Delta x=x_2-x_1Δx=x2​−x1​. Эта величина — удлинение пружины, то есть то, насколько пружина стала длиннее относительно своего исходного состояния. В задачах ЕГЭ очень часто любят «подлавливать» на том, что экзаменуемый считает ΔxDelta xΔx длиной пружины, а не удлинением.

Знак −-− в формуле показывает, что направление силы упругости пружины противоположно направлению изменения длины пружины: когда пружину растягивают, например, вправо, то сила упругости, которая возникает в пружине, будет направлена влево — пружина будет «пытаться» вернуть себя в исходное состояние. Поэтому корректнее записать закон Гука в векторной форме: F⃗упругости=−k⋅Δx⃗.vec{F}_{упругости}=-kcdotDeltavec{x}{.}F⃗упругости​=−k⋅Δx⃗.

Единица измерения жесткости [k]=[FΔx]=[Нм][k]=[frac{F}{Delta x}]=[frac{Н}{м}][k]=[ΔxF​]=[мН​].

Однако закон Гука выполняется не всегда. Закон Гука справедлив только для пластичных деформаций. Это такие деформации, при которых тело полностью восстанавливает свою форму и размеры после исчезновения сил, деформирующих тело. Короче говоря, закон Гука будет выполняться и деформации будут пластичными в том случае, когда растянутая или сжатая пружинка вернет себе форму после того, как ее перестанут растягивать или сжимать. Если пружину растянуть слишком сильно, то она может так и остаться растянутой. Деформации, которым она подверглась, были непластичными, и закон Гука выполнялся не везде.

Задачи для самостоятельного решения: #сила упругости

Источник

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Читайте также:  Троксевазин при беременности при растяжении

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

Зависимость модуля силы упругости f пружины от ее растяжения x

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

ℓ0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

Зависимость модуля силы упругости f пружины от ее растяжения x — единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

Зависимость модуля силы упругости f пружины от ее растяжения x

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Зависимость модуля силы упругости f пружины от ее растяжения x

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Зависимость модуля силы упругости f пружины от ее растяжения x

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Зависимость модуля силы упругости f пружины от ее растяжения x

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Зависимость модуля силы упругости f пружины от ее растяжения x

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

Зависимость модуля силы упругости f пружины от ее растяжения x

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

Зависимость модуля силы упругости f пружины от ее растяжения x

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Источник