Волны сжатия и растяжения
1.1. Упругие продольные и поперечные волны
1.2. Характеристики бегущих волн
1.2.1. Длина волны
1.2.2. Фазовая скорость волны
1.2.3. Фазовая скорость различна для разных сред
1.2.4. Фронт волны. Волновая поверхность
1.2.5. Уравнение бегущей волны
1.2.6. Волновое уравнение
1.2.7. Скорость и ускорение колеблющейся точки. Относительное смещение точек среды
1.3. Энергия упругих волн
1.4. Принцип суперпозиции волн. Групповая скорость
1.5. Интерференция волн. Стоячие волны
1. Упругими или механическими волнами называются механические возмущения (деформации), распространяющиеся в упругой среде.
Деформации в теле или среде называются упругими, если они полностью исчезают после прекращения внешних воздействий.
Тела, которые воздействуют на среду, вызывая колебания, называются источниками волн. Распространение упругих волн не связано с переносом вещества, но волны переносят энергию, которой обеспечивает волновой процесс источник колебаний.
2. Среда называется однородной, если ее физические свойства, рассматриваемые в данной задаче, не изменяются от точки к точке.
Среда называется изотропной, если ее физические свойства, рассматриваемые в задаче, одинаковы по всем направлениям.
Среда называется линейной, если между величинами, характеризующими внешнее воздействие на среду, которое и вызывает ее изменение, существует прямо пропорциональная связь. Например, выполнение закона Гука означает, что среда линейна по своим механическим свойствам.
1.1. Упругие продольные и поперечные волны
Все волны делятся на продольные и поперечные.
Поперечные волны – упругие волны, при распространении которых частицы среды совершают колебания в направлении, перпендикулярном направлению распространения волны.
Продольные волны – упругие волны, при распространении которых частицы среды совершают колебания вдоль направления распространения волны.
Поперечные упругие волны возникают только в твердых телах, в которых возможны упругие деформации сдвига. Продольные волны могут распространяться в жидкостях или газах, где возможны объемные деформации среды, или в твердых телах, где возникают деформации удлинения или сжатия. Исключение составляют поперечные поверхностные волны. Простые продольные колебания – это процесс распространения в пространстве областей сжатий и растяжений среды. Сжатия и растяжения среды образуются при колебаниях ее точек (частиц) около своих положений равновесия.
1.2. Характеристики бегущих волн
1.2.1. Длина волны
Минимальное расстояние, на которое распространяется волна за время, равное периоду колебания точки среды около положения равновесия, называется длиной волны.
Длиной волны называется наименьшее расстояние между двумя точками среды, совершающими колебания в фазе (т.е. разность их фаз равна ).
Если точки разделены расстоянием , их колебания происходят в противофазе.
1.2.2. Фазовая скорость волны
Из повседневного опыта известно, что бегущие по воде волны распространяются с постоянной скоростью, пока свойства среды, например, глубина воды, не меняется, что говорит о том, что скорость распространения волнового процесса в пространстве остается постоянной. В случае гармонических бегущих волн (см. определение выше) эта скорость называется фазовой.
Фазовая скорость — это скорость распространения данной фазы колебаний, т.е. скорость волны.
Связь длины волны , фазовой скорости и периода колебаний Т задается соотношением:
.
Учитывая, что , где — линейная частота волны, — период, а циклическая частота волны , получим разные формулы для фазовой скорости:
.
Для волнового процесса характерна периодичность по времени и по пространству.
Т – период колебаний точек среды. Роль пространственного периода играет длина волны . Соотношение между периодом и циклической частотой задается формулой: . Аналогичное соотношение можно записать для длины волны и величиной k, называемой волновым числом: .
Таким образом. Можно добавить еще одно уравнение для фазовой скорости:
.
1.2.3. Фазовая скорость различна для разных сред
В случае упругих поперечных волн (в твердом теле) фазовая скорость равна:
,
где — модуль сдвига среды, -ее плотность в невозбужденном состоянии (т.е. когда в этой среде не распространяется упругая волна).
Фазовая скорость упругих продольных волн в твердом теле равна
,
где Е — модуль Юнга, — плотность невозмущенной среды (твердого тела до момента распространения по нему волны).
Фазовая скорость продольных волн в жидкости и газе определяется соотношением: ,
где К – модуль объемной упругости среды – величина, характеризующая способность среды сопротивляться изменению ее объема, — плотность невозмущенной среды.
Фазовая скорость продольных волн в идеальном газе задается формулой: ,
— показатель адиабаты, — молярная масса, Т – абсолютная температура, R – универсальная газовая постоянная. Фазовая скорость в газе зависит от сорта газа () и от его термодинамического состояния (Т).
1.2.4. Фронт волны. Волновая поверхность
При прохождении волны по среде ее точки вовлекаются в колебательный процесс последовательно друг за другом.
Геометрическое место точек, до которого к некоторому моменту времени дошел колебательный процесс, называется волновым фронтом.
Геометрическое место точек, колеблющихся в фазе, называется волновой поверхностью.
Волновой фронт – частный случай волновой поверхности. Волновой фронт все время перемещается. Волновые поверхности остаются неподвижными. Они проходят через положения равновесия частиц среды, которые колеблются в одинаковой фазе.
При описании распространения волн широко используют понятие луча. Направления, в которых распространяются колебания, называются лучами. В изотропной среде (см. определение выше) лучи перпендикулярны волновым поверхностям (фронту) и имеют вид прямых линий. В анизотропной среде, а также при дифракции волн, лучи могут искривляться.
Форма волнового фронта определяет вид волны: сферические (от точечного источника в изотропной среде), эллиптические (в анизотропной среде), цилиндрические (от протяженных источников), плоские и другие. На достаточно большом расстоянии от источника небольшой участок любого фронта можно считать плоским.
Если известно положение фронта волны в некоторый момент времени и скорость волны , то его положение в последующий момент времени можно определить на основе принципа Гюйгенса. Согласно этому принципу все точки поверхности волнового фронта являются источниками вторичных волн. Искомое положение волнового фронта совпадает с поверхностью, огибающей фронты вторичных волн.
1.2.5. Уравнение бегущей волны
Уравнением упругой волны называется зависимость от координат и времени скалярных или векторных величин, характеризующих колебания среды при прохождении по ней волны.
Так, для волн в твердом теле такой величиной является смещение от положения равновесия любой точки тела в произвольный момент времени. Для характеристики продольных волн в жидкости или газе используют понятие избыточного давления. Избыточное давление равно разности между давлением в данный момент времени, когда по среде проходит волна, и равновесным, когда возмущений в среде нет.
Получим уравнение бегущей волны в одномерном пространстве, которое предполагаем изотропным и однородным (см. определения выше). Кроме того, силы сопротивления в среде считаем пренебрежимо малыми (т.е. нет затухания колебаний). Пусть точка О — центр (источник) колебаний, она колеблется по закону:
,
где — смещение точки О от положения равновесия, — частота, А – амплитуда колебаний. Часы или секундомер №1 включаются сразу, как только начинаются колебаний точки О, и отсчитывают время t (Рисунок 2.1.1). Ось ОУ совпадает с направлением распространения волны.
Через промежуток времени процесс колебаний дойдет до точки В, и она будет колебаться по закону: .
Рисунок 2.1.1.
Амплитуда колебаний в случае отсутствия затухания процесса будет такой же как и амплитуда точки О. Часы или секундомер №2 включаются тогда, когда колебательный процесс дойдет до точки В (т.е. когда начинает колебаться точка В), и отсчитывают время . Моменты времени t и связаны между собой соотношением или . Расстояние между точками О и В обозначим . Фазовая скорость волны равна , тогда . Учитывая соотношения для и и формулы и , можно записать уравнение колебаний точки В в разных видах:
.
Аналогично уравнению колебаний точки В запишем уравнение колебаний любой точки среды, расположенной на расстоянии y от источника колебаний:
,
где — волновое число (см. определение выше).
Это уравнение и есть уравнение для смещения любой точки пространства в любой момент времени, т.е. уравнение бегущей волны, где А – амплитуда, величина — фаза волны, которая в отличии от фазы колебаний зависит и от времени “t”, и от расстояния “y” колеблющейся точки от источника колебаний.
Вернемся к разделению волн по форме фронта волны и к понятию луча, как направления распространения колебательного процесса. Учтем, что в изотропной среде лучи перпендикулярны фронту и имеют вид прямых линий. Тогда уравнение бегущей волны, полученное выше, есть уравнение плоской бегущей волны, т.е. когда фронт волны – плоскость.
Уравнение плоской отраженной волны в одномерном пространстве легко получить, если представить ее как бегущую волну в отрицательном направлении оси ОУ, что приведет к замене в уравнении бегущей волны координаты “y” на “-y”:
.
Упругая волна называется синусоидальной или гармонической, если соответствующие ей колебания частиц среды являются гармоническими. Так, рассмотренные выше бегущая и отраженная волны являются гармоническими волнами.
1.2.6. Волновое уравнение
Когда мы рассматривали колебания, то для любой колебательной системы получали дифференциальное уравнение, для которого соответствующее уравнение колебаний являлось решением. Аналогично уравнение бегущей и отраженной волны являются решениями дифференциального уравнения второго порядка в частных производных, называемого волновым уравнением и имеющего вид:
, где — фазовая скорость волны.
Уравнения бегущей и отраженной волн и волновое уравнение представлены для случая одного измерения, т.е. распространения волны вдоль оси ОУ. В волновое уравнение входят вторые частные производные по времени и координате от смещения потому, что есть функция двух переменных t и y.
1.2.7. Скорость и ускорение колеблющейся точки. Относительное смещение точек среды
Если смещение любой точки среды с координатой y в момент времени t задано уравнением:
,
то скорость этой точки есть величина , а ускорение — :
,
1.3. Энергия упругих волн
В среде распространяется плоская упругая волна и переносит энергию, величина которой в объеме равна: , где — объемная плотность среды.
Если выбранный объем записать как , где S – площадь его поперечного сечения, а — его длина, то среднее количество энергии, переносимое волной за единицу времени через поперечное сечение S, называется потоком через его поверхность:
.
Количество энергии, переносимое волной за единицу времени через единицу площади поверхности, расположенной перпендикулярно направлению распространения волны, называется плотностью потока энергии волны.
Эта величина определяется соотношением:
,
где -объемная плотность энергии волны, — фазовая скорость волны. Так как фазовая скорость волны — вектор, направление которого совпадает с направлением распространения волны, то можно величине плотности потока энергии I придать смысл векторной величины:
.
Величина , вектор плотности энергии волны, впервые была введена Н.А. Умовым в 1984 году и получила название вектора Умова. Подобная величина для электромагнитных волн называется вектором Умова — Пойнтинга.
Интенсивностью волны называется модуль среднего значения вектора Умова .
1.4. Принцип суперпозиции волн. Групповая скорость
Принцип суперпозиции (наложения) волн установлен на опыте. Он состоит в том, что в линейной среде волны от разных источников распространяются независимо, и накладываясь, не изменяют друг друга. Результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые частица получит, участвуя в каждом из слагаемых волновых процессов.
Согласно принципу суперпозиции накладываться друг на друга без взаимного искажения могут волны любой формы. В результате наложения волн результирующее колебание каждой частицы среды может происходить по любому сложному закону. Такое образование волн называется волновым пакетом. Скорость движения волнового пакета не совпадает со скоростью ни с одной из слагаемых волн. В этом случае говорят о скорости волнового пакета. Скорость перемещения максимума группы волн (волнового пакета) называется групповой скоростью. Она равна скорости переноса энергии волнового пакета.
На практике мы всегда имеем дело с группой волн, так как синусоидальных волн, бесконечных в пространстве и во времени, не существует. Любая ограниченная во времени и пространстве синусоидальная волна есть волновой пакет (его называют цуг волны). Групповая скорость такого пакета совпадает с фазовой скоростью бесконечных синусоидальных волн, результатом сложения которых он является.
В общем виде связь между групповой и фазовой скоростями имеет вид:
.
1.5. Интерференция волн. Стоячие волны
1. Интерференцией волн называется явление наложение двух и более волн, при котором в зависимости от соотношения между фазами этих волн происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других.
В пространстве всегда найдутся такие точки, в которых разность фаз складываемых колебаний равна величине , где k – целое число, т.е. волны (от разных источников) приходят в такие точки в фазе. В них будет наблюдаться устойчивое, неизменно продолжающееся все время усиление колебаний частиц. Найдутся в пространстве, где распространяется несколько волн, и такие точки, где разность фаз будет равна , т.е. волны приходят в эти точки в противофазе. В таких точках пространства будет наблюдаться устойчивое ослабление колебаний частиц.
Устойчивая интерференционная картина возникает только при наложении таких волн, которые имеют одинаковую частоту, постоянную во времени разность фаз в каждой точке пространства. Волны, удовлетворяющие этим условиям и источники, создающие такие волны, называются когерентными. Плоские синусоидальные волны, частоты которых одинаковы, когерентны всегда.
2. Запишем условия максимумов и минимумов при интерференции. Когерентные точечные источники и испускают волны по всем направлениям. До точки наблюдения М расстояние от первого источника , а от второго — .
Колебания точки М под действием волн от двух источников и описываются уравнениями:
, . Амплитуда результирующего колебания в точке М определится следующим образом (см. раздел “Сложение колебаний”): . Амплитуда колебаний точки М максимальна (), если , где Величина называется разностью хода двух волн. Условие максимума при интерференции имеет вид: . Если целое число волн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный максимум. Амплитуда колебаний точки М минимальна (), если , (). Условие минимума при интерференции имеет вид: . Если нечетное число полуволн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный минимум. 3. Простейший случай интерференции наблюдается при наложении бегущей и отраженной волн, что приводит к образованию стоячей волны. Уравнения бегущей и отраженной волны имеют вид: , Суммарное смещение частицы среды, находящейся на расстоянии y от источника колебаний, равно сумме смещений и : .
Это и есть уравнение стоячей волны. Величина — амплитуда, а () — фаза стоячей волны. Можно сказать, что частицы в стоячей волне имеют одну фазу колебаний. Амплитуда колебаний частиц в стоячей волне зависит от их координат (расстояний до источника колебаний), но не зависит от времени. Знак модуля поставлен в формуле для амплитуды стоячей волны, потому что амплитуда – величина положительная.
В стоячей волне есть точки, которые все время остаются неподвижными. Такие точки называются узлами смещения, их положение определяется из условия:
, отсюда следует . Выполнение этого соотношения будет при условии для Итак, координаты узлов задаются формулой:
.
Расстояние между двумя соседними узлами равно .
Точки среды, колеблющиеся с наибольшей амплитудой, называются пучностями стоячей волны, их положение (координаты) определяются соотношением:
.
Это уравнение можно получить из условия максимума амплитуды
, т.е. . Последнее соотношение выполняется при значениях аргумента ().
Расстояние между двумя соседними пучностями равно .
4. Изменение фазы волны при ее отражении.
Как отмечалось ранее, стоячая волна образуется при сложении бегущей и отраженной волн. Отраженную волну можно рассматривать как бегущую волну, распространяющуюся в обратном направлении и ее можно получить при отражении бегущей волны от границы двух сред. Для синусоидальных волн это означает, что при отражении от более плотной среды фаза волны скачком изменяется на радиан, а при отражении от менее плотной среды фаза волны не изменяется. Изменение фазы на радиан соответствует появлению дополнительного хода луча, равного .
Источник
Распространение ультразвуковых волн
Ультразвуковой контроль основан на изменяющихся во времени деформациях материалов, которые деформируются под воздействием ультразвука и обычно называются акустикой (звуковой) деформацией.
Все материальные вещества состоят из атомов. Эти атомы можно заставить двигаться во круг своих точек равновесия по действием ультразвукового импульса. На атомном уровне существует множество различных моделей колебательного движения, однако большинство из них не имеют отношения к акустике и ультразвуковым исследованиям. Ультразвуковая акустика ориентирована на частицы, которые содержат много атомов, которые движутся в унисон, чтобы и образовать механическую волну. Именно эти волновые импульсы и используются в методах неразрушающего контроля.
Если материал не подвергается растяжению или сжатию за пределы своего предела упругости, то его отдельные частицы начинают совершать упругие колебания. А частицы среды вытесняются из своих положений равновесия и возникает внутренние (электростатические) силы восстанавливающие материал. Именно эти упругие восстанавливающие силы между частицами в сочетании с инерцией частиц приводят к колебательным движениям среды. Что мы и называем ультразвуком.
В твердых телах распространение ультразвуковых импульсов могут распространяться в четырех основных видах, основанных на способе колебаний частиц.
- Звук может распространяться как продольные волны
- Поперечные волны
- Поверхностные волны,
- В тонких материалах – как пластинчатые волны.
Продольные и поперечные волны являются двумя видами импульсов, наиболее широко используемыми при ультразвуковом контроле.
Движение частиц, ответственное за распространение продольных и поперечных волн, представлено ниже.
Распространение в среде
В продольных волнах колебания происходят в продольном направлении. Поскольку в этих волнах действуют силы сжатия и растяжения, их также называют волнами давления или сжатия.
Такое импульсы иногда называют импульсными-волнами плотности, потому что плотность частиц материала колеблется при движении. Такие импульсные-волны сжатия могут генерироваться как в жидкости, так и в твердом теле, поскольку энергия проходит через атомную структуру в результате серии движений сжатия и расширения (разрежения).
Для эффективного распространения продольные волны требуют акустически твердого материала и следовательно, не распространяются эффективно в таких материалах, как жидкости или газы. Поперечные импульсы-волны относительно слабы по сравнению с продольными волнами. Фактически, поперечные волны обычно генерируются в материалах, при этом используют часть энергии от продольных волн, что видно из картинки. Поперечная волна, также движется и в продольном направлении.
Виды ультразвуковых волн
В воздухе звук распространяется за счет сжатия и разрежения молекул воздуха в направлении движения. Однако в твердых телах молекулы могут поддерживать колебания в других направлениях, следовательно, возможен ряд различных типов ультразвуковых волн. Волны могут проявляться в пространстве колебательными структурами, которые способны сохранять свою форму и распространяться стабильно.
Как упоминалось ранее, продольные и поперечные (сдвиговые) волны чаще всего используются при ультразвуковом контроле. Однако на поверхностях различные типы эллиптических или сложных колебаний частиц создают другие виды волны. Некоторые из этих волновых структур, такие как волны Рэлея и волны Лэмба, также полезны для ультразвукового контроля.
В таблице ниже приведены многие, но не все, волновые виды, возможные в твердых телах.
Типы волн в твердых телах | Частица участвующая в Вибрации |
Продольная | Параллельно направлению волны |
Поперечная (сдвиг) | Перпендикулярно направлению волны |
Поверхностная волна – Рэлея | Эллиптическая орбита – симметричный режим |
Волна – Лэмба | Компонент перпендикулярно поверхности (волна растяжения) |
Продольные и поперечные волны обсуждались на предыдущей странице, поэтому давайте коснемся поверхностных и пластинчатых волн здесь.
Волна Рэлея
Поверхностные (или Рэлеевские) волны распространяются по поверхности относительно твердого материала, проникающего на глубину длины волны. Волны Рэлея объединяют в себе продольное и поперечное движение для создания эллиптического движения по орбите, как показано на рисунке и анимации ниже. Большая ось эллипса перпендикулярна поверхности твердого тела. По мере того как глубина отдельного атома от поверхности увеличивается, ширина его эллиптического движения уменьшается. Поверхностные волны генерируются, когда продольная волна пересекает поверхность вблизи второго критического угла (дефекта), и они движутся со скоростью от 0,87 до 0,95 поперечной волны.
Волны Рэлея полезны, потому что они очень чувствительны к поверхностным дефектам (и другим поверхностным элементам).
Волны Лэмба
Волны Лэмба являются наиболее часто используемыми пластинчатыми волнами в неразрушающем контроле. Волны Лэмба – это сложные колебательные волны, которые распространяются параллельно поверхности при испытании по всей толщине материала. Распространение волн Лэмба зависит от плотности и свойств упругости материала. Они также сильно зависят от частоты импульсов и толщины материала. Волны Лэмба генерируются под углом падения, при котором параллельная составляющая скорости волны в источнике равна скорости волны в исследуемом материале. Волны Лэмба в стали распространяются на несколько метров и поэтому очень полезны для сканирования стальных материалов, проволоки и труб.
С волнами Лэмба возможны несколько видов колебательных движений, но наиболее распространенными являются симметричные и асимметричные.
Волновое движение в симметричном режиме часто возникает, когда возбуждающий импульс идёт параллельно материалу. Асимметричная волна возникает когда импульс движется перпендикулярно материалу в детали и небольшое движение происходит в параллельном направлении.
Рекомендуем видео по теме:
Источник