Условный предел упругости при растяжении

К механическим свойствам металлов относят их способность сопротивляться деформациям (изменению формы или размеров) и разрушению под действием внешних нагрузок. Такими свойствами являются прочность, пластичность, твердость, вязкость (ударная), усталость, ползучесть.

Деформации, которые исчезают после снятия нагрузки, при этом материал принимает первоначальную форму, называют упругими. Деформации, которые остаются после снятия нагрузки, называют остаточными.

Для определения механических свойств материалов специальные образцы или готовые изделия испытывают в соответствии с требованиями ГОСТов. Испытания образцов могут быть статическими, когда на образец действует постоянная или медленно возрастающая нагрузка, динамическими, когда на образец действует мгновенно возрастающая (ударная) нагрузка, и повторно-переменными (усталостными), при которых нагрузка на образец многократно изменяется по величине и направлению.

В зависимости от характера действия приложенных к образцу или изделию сил (нагрузок) различают деформации сжатия, растяжения, изгиба, сдвига (среза), кручения.

Виды деформаций металла в зависимости от направления действующей нагрузки

Виды деформаций металла в зависимости от направления действующей нагрузки:

а — сжатия, б — растяжения, в — изгиба, г — сдвига (среза), д — кручения

Механические свойства оцениваются численным значением напряжения.

Напряжение — мера внутренних сил, возникающих в образце под влиянием внешних воздействий (сил, нагрузок).

Напряжение служит для оценки нагрузки, не зависящей от размеров деформируемого тела. Напряжения, действующие вдоль оси образца, называют нормальными и обозначают буквой σ (сигма).

Нормальные напряжения определяются отношением сил, действующих вдоль оси детали или образца, к площади их поперечного сечения:

σ = P/F,

где σ — нормальное напряжение, Па (1 Па = H/м²; 1 кгс/см² = 105 Па);

P — сила, действующая вдоль оси образца, H;

F — площадь поперечного сечения образца, м².

Нормальные напряжения в зависимости от направления действующих нагрузок бывают сжимающими и растягивающими.

Напряжения, действующие перпендикулярно оси образца, называют касательными и обозначают буквой τ.

Под действием касательных напряжений происходит деформация среза.

Напряжения определяют при механических испытаниях образцов на специальных машинах. Эти напряжения используют при расчетах деталей машин на прочность.

Усилия, нагрузки, действующие на детали, создают в них напряжения, которые в свою очередь вызывают деформацией деталей.

Например, канат автомобильного крана при поднятии груза под действием растягивающей нагрузки испытывает напряжение растяжения, поэтому и подвергается деформации растяжения. Под действием сжимающих напряжений деформацию сжатия испытывают станины и фундаменты станков, опорные колонны, колеса и катки машин. В стреле автомобильного или башенного крана, поднимающего груз, возникают напряжения изгиба, которые вызывают деформацию изгиба стрелы. Деформации изгиба испытывают балки, на которые положен груз, рельсы под тяжестью
поезда, башенного или козлового крана. На срез работают заклепочные соединения, стопорные болты.

Напряжения кручения вызывают деформацию кручения, например, когда у стяжных болтов
затягивают гайки.

Прочность — способность металлов или сплавов сопротивляться разрушению при действии внешних сил, вызывающих внутренние напряжения и деформации.
В зависимости от характера действия внешних сил различают прочность на растяжение, сжатие, изгиб, кручение, ползучесть и усталость.

Определение характеристик прочности при растяжении — наиболее важный и распространенный вид механических испытаний металлов. Испытывают образцы определенной формы и размеров на специальных разрывных машинах (ГОСТ 1497—73). Стандартный образец (рис. Стандартный образец для испытания на растяжение) закрепляют головками в машине и медленно нагружают с постоянной скоростью.

Образец для испытания на растяжение

В результате возрастающей нагрузки происходит растяжение образца вплоть до разрушения.
При испытании производится автоматическая запись диаграммы растяжения, представляющей собой график изменения абсолютной длины образца в зависимости от приложенной нагрузки.

Диаграмма растяжения малоуглеродистой стали

Определенные точки на диаграмме растяжения p, c, s, b отражают наиболее важные характеристики прочности: предел пропорциональности, условные пределы упругости, текучести и прочности.

Предел пропорциональности σ пц (точка p на диаграмме растяжения) — это наибольшее напряжение, возникающее под действием нагрузки P пц, до которого деформации в металле растут прямо пропорционально нагрузке. При этом в образце происходят только упругие деформации, т.е. образец после снятия нагрузки принимает свои первоначальные размеры. При дальнейшем увеличении нагрузки деформации образца будут остаточными.

Условный предел упругости σ 0,05 (точка c на диаграмме растяжения) — это напряжение, при котором образец получает остаточное удлинение, равное 0,05% первоначальной длины образца.

Практически предел упругости очень близок пределу пропорциональности.

Условный предел текучести (точка s на диаграмме растяжения) — это напряжение, при котором остаточное
удлинение достигает заданного значения, обычно 0,2%, но иногда 0,1 или 0,3% и более при нагрузках Рt.

В соответствии с этим условный предел текучести обозначается σ 0,2, σ о,1, σ 0,3 и т. д.

Следовательно, условный предел текучести отличается от условного предела упругости только заданным значением остаточного удлинения.
Условный предел текучести соответствует напряжению, при котором происходит наиболее полный переход к пластической деформации металла.

Условный предел прочности σ в (точка b на диаграмме растяжения) — это условное наибольшее напряжение, при котором происходит наибольшая равномерная по всей длине деформация образца.

После точки s на участке sb диаграммы растяжения при дальнейшем увеличении нагрузки в образце развивается интенсивная пластическая деформация. До точки b образец удлиняется равномерно по всей длине. В точке b начинается резкое уменьшение поперечного сечения образца на коротком участке с образованием так называемой шейки.

Предел прочности определяют по формуле:

σ в = Pв/Fo,

где σ в — предел прочности материала, Па;

Pв — нагрузка в точке b, H;

Fo — площадь поперечного сечения образца до испытания, м².

Характеристиками прочности пользуются при изготовлении деталей машин. Практическое значение пределов пропорциональности, упругости и текучести сводится к тому, чтобы определить численное значение напряжений, под действием которых могут работать детали машинах, не подвергаясь остаточной деформации (предел пропорциональности) или подвергаясь деформации на небольшую допустимую величину σ 0,о5, σ о,2 и т. д.

Пластичность — способность металлов сохранять изменение формы, вызванное действием деформирующих сил после того, как силы сняты.

Пластические свойства испытываемого образца металла определяют при испытаниях на растяжение. Под действием нагрузки образцы удлиняются, при этом поперечное сечение их соответственно уменьшается. Чем больше удлиняется образец при испытании, тем более пластичен материал. Характеристиками пластичности материалов служат относительное удлинение и относительное сужение образцов.

Относительным удлинением называется отношение приращения длины образца после разрыва к его перво-
начальной длине.

Относительное удлинение δ (дельта) выражают в процентах и вычисляют по формуле:

δ = [ (l1 — l0)/l0 ] • 100%

где l1 — длина образца после разрыва, м;

l0 — длина образца до начала испытания, м.

Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к площади поперечного сечения образца до начала испытания.

Относительное сужение ψ (пси) выражают в процентах и вычисляют по формуле

ψ = [ (F0 — F1)/F0 ] • 100%

где F0 — площадь поперечного сечения образца до начала испытания, м²;

F1 — площадь поперечного сечения образца после разрыва, м².

Твердость — сопротивление поверхностных слоев материала местным деформациям.

Твердость обычно оценивается сопротивлением вдавливанию в поверхность металла индикатора из более твердого материала.

Измерение твердости металлов и сплавов как метод щенки их механических свойств широко используется в технике.
По твердости судят о других свойствах металла и сплава. Например, для многих сплавов, чем выше твердость, тем больше прочность на растяжение, выше износостойкость; как правило, сплавы с меньшей твердостью легче обрабатываются резанием.

Читайте также:  Чем помочь при сильном растяжении ноги

Твердость определяют непосредственно на деталях без их разрушения. Поэтому испытание на твердость является незаменимым производственным методом оценки механических свойств материалов.

На практике в зависимости от используемого прибора твердость определяют двумя способами. Если твердость исследуемого материала меньше, чем твердость закаленной стали, то используют твердомер шариковый — ТШ, если твердость исследуемого материала больше, чем твердость закаленной стали, то пользуются твердомером конусным — ТК.

При определении твердости по Бринеллю на приборах ТШ (ГОСТ 9012—59) стальной закаленный шарик диаметром D (2,5; 5 или 10 мм) вдавливают в испытуемый металл под действием нагрузки P в течение определенного времени.

Схема определения твердости по Бринеллю

После удаления нагрузки на поверхности испытуемого металла остается отпечаток.
Измерив под микроскопом диаметр отпечатка а, по таблицам стандарта определяют твердость металла.
Отношение приложенной к шарику нагрузки (кгс) к площади поверхности отпечатка шарика (мм²) называется числом твердости по Бринеллю и обозначается HB.

Если на шарик диаметром 0-10 мм действует нагрузка Р=3000 кгс в течение 10 с, то определяемое по таблицам число твердости по Бринеллю записывают так: HВ400, HВ250, HВ500 и т. д.

При других условиях испытания к обозначению НВ добавляют цифры, характеризующие диаметр шарика (мм), нагрузку (кгс) и продолжительность выдержки (с).

Например, HВ5/750/30—350 обозначает, что число твердости по Бринеллю равно 350 при испытании вдавливанием шарика диаметром D = 5 мм под нагрузкой Р = 750 кгс в течение t = 30 с.

При определении твердости по Роквеллу на приборах ТК (ГОСТ 9013—59) алмазный конус с углом при вершине 120° вдавливают в испытуемый металл сначала под действием предварительной нагрузки Р0, равной
10 кгс, которая не снимается до конца испытания.

Схема определения твердости по Роквеллу

Под нагрузкой Р0 алмазный конус вдавливается на глубину h0. Затем к предварительной нагрузке добавляется основная нагрузка Р1, равная 140 или 50 кгс — для очень твердых и хрупких материалов. Алмазный конус вдавливается на глубину h1. Через 1 — 3 с, после того как стрелка прибора замедлит свое движение, основную нагрузку снимают. Стрелка прибора показывает на шкале твердость металла в условных единицах.

За условную единицу твердости по Роквеллу принимается глубина вдавливания алмазного конуса на величину 0,002 мм ≈ h0. Все шкалы прибора отградуированы в безразмерных условных единицах твердости.

Твердость, определяемая на приборах ТК. методом вдавливания алмазного конуса, называется твердостью по Роквеллу и обозначается НR. Отсчет твердости ведут по двум шкалам в зависимости от применяемой общей нагрузки Р.

Если Р = Р0 + Р1= 10 + 140= 150 кгс, то отсчет твердости ведут по шкале С и твердость обозначают НРС, если Р = Ро+Р1 = 10+50 = 60 кгс, то отсчет твердости ведут также по шкале С, но твердость обозначают НРА.

Если необходимо измерить твердость по Роквеллу мягких материалов, то алмазный конус заменяют шариком диаметром 1,6 мм. Основная нагрузка Р1 = 90 кгс, значит, общая нагрузка Р = Р0Р1 = 10 + 90 = 100 кгс.

Отсчет твердости ведут по специальной шкале B, а твердость обозначают НRB.

Твердость по Роквеллу НR записывают таким образом:
HRC65, HRB30, HRA80 и т. д., где цифры обозначают твердость, а буквы А, С, В — соответствующую шкалу.

Ударная вязкость — способность металлов сопротивляться действию ударных нагрузок. При ударных нагрузках напряжения, возникающие в металле, действуют мгновенно, поэтому их трудно определить. Ударную вязкость определяют работой, затраченной на излом образца.

Для определения ударной вязкости при нормальной температуре (ГОСТ 9454—78) предусмотрено 20 типоразмеров образцов квадратного и прямоугольного сечения. Чаще применяют образцы квадратного сечения 10 х 10 мм длиной 55 мм с концентратором (надрезанные с одной стороны посередине длины на глубину 2 мм).

Образец 1 стандартной формы

Схема испытания образца на ударную вязкость на маятниковом копре

укладывают горизонтально в специальный шаблон маятникового копра, обеспечиваюший установку надреза образца строго в середине пролета между опорами 3. Маятник 2 копра закрепляется в исходном верхнем положении на высоте H.

Затем маятник сбрасывается, и он, свободно падая под действием собственной тяжести, наносит удар по образцу 1 со стороны, противоположной надрезу. В результате удара образец изгибается и ломается, а маятник после разрушения образца продолжает двигаться дальше и поднимается на высоту h.

Работа, затраченная на разрушение образца, определяется разностью потенциальных энергий маятника в начальный (после подъема на угол α) и конечный моменты испытания (после взлета на угол β) и выражается формулой:

k = P (H — h)

k — работа, затраченная на разрушение образца, Дж (кгс · м)

Р — вес маятника, кгс

H и h — высоты подъема и взлета маятника, м

Основную характеристику при испытании на ударную вязкость — определяют по формуле:

kcu = k/So

kc — ударная вязкость, Дж/м² (1 Дж/м² ≈ 0,1 кгс · м/см²)

u — форма концентратора

So — площадь поперечного сечения образца в месте надреза до испытания, м²

Многие детали машин и конструкции во время работы подвергаются ударным нагрузкам, действие которых на детали происходит мгновенно. В результате изменяются условия, при которых работают такие детали.

Ударные нагрузки испытывают инструменты типа штампов. некоторые зубчатые передачи и т.д.

Усталость — разрушение металлов под действием многократных повторно-переменных (циклических) нагрузок, при напряжениях меньших предела прочности на растяжение.

В условиях действия повторно-переменных нагрузок в работающих деталях образуются и развиваются трещины, которые приводят к полному разрушению деталей. Подобное разрушение опасно тем, что может происходить под действием напряжений, намного меньших пределов прочности и текучести.

Свойство противостоять усталости называется выносливостью. Сопротивление усталости характеризуется пределом выносливости, т. е. наибольшим напряжением, которое может выдержать металл без разрушения заданное число раз.

Под действием повторно-переменных нагрузок работают коленчатые валы двигателей, многие детали машин — валы, шатуны, пальцы, шестерни и т. д.

Цель испытаний на усталость (ГОСТ 2860-65) — количественная оценка способности материала (образца) работать при повторно-переменных нагрузках без разрушения.

Цикл напряжений — совокупность переменных значений напряжении за один перепад их изменения. Заданное число циклов нагружения при испытании называют базой испытания. Обычно база испытания составляет 108 циклов нагружения. Если материал выдержал базовое число циклов без разрушения, то он хорошо противостоит усталости и деталь из этого материала будет работать надежно.

Ползучесть — способность металлов и сплавов медленно и непрерывно пластически деформироваться под действием постоянной, длительно действующей нагрузки.

Изделия из металлов и сплавов, работающие при повышенных или высоких температурах, обладают меньшей прочностью. При эксплуатации любой материал под действием постоянной нагрузки (напряжения) может в определенных условиях прогрессивно деформироваться с течением времени.

Испытания на ползучесть при растяжении (ГОСТ 3248-60) заключаются в том, что испытуемый образец в течение длительного времени подвергается действию постоянного растягивающего усилия при постоянной высокой температуре.

В результате испытания определяют предел ползучести металла, т. е. наибольшее растягивающее напряжение, при котором скорость ползучести или относительное удлинение за определенный промежуток времени достигает заданной величины.

Если задаются скоростью ползучести, то предел ползучести обозначают σνп,

где νп — заданная скорость ползучести, %/ч; t — температура испытания, °С.

Например, предел ползучести при температуре 1000 —  это предел ползучести при температуре 1000°С и скорости ползучести νп = 1 · 10-4 %/ч.

Если задаются относительным удлинением, то в обозначении предела ползучести используют три индекса:

Читайте также:  Напряжение растяжения в стыковом шве

температуру испытания t, °С

относительное удлинение σ, %

продолжительность испытания τ, ч

Например, предел ползучести при температуре 800 — предел ползучести при температуре 800° С, когда относительное удлинение σ = 1% достигается за 1000 ч.

Источник

ГОСТ 270-75

Группа Л69

Дата введения 1978-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 03.02.82 N 439

3. ВЗАМЕН ГОСТ 270-64

4. Стандарт полностью соответствует СТ СЭВ 2594-80, МС ИСО 37-76*
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

6. Ограничение срока действия снято Постановлением Госстандарта от 15.10.92 N 1388

7. ИЗДАНИЕ (июль 2003 г.) с Изменениями N 1, 2, 3, утвержденными в феврале 1982 г., июне 1987 г. и октябре 1992 г. (ИУС 4-82, 11-87, 1-93)

Переиздание (по состоянию на июль 2008 г.)

Настоящий стандарт распространяется на резину и устанавливает метод определения упругопрочностных свойств при растяжении по показателям: прочности при растяжении, относительному удлинению при разрыве, напряжению при заданном удлинении.

Сущность метода заключается в растяжении образцов с постоянной скоростью до разрыва и измерении силы при заданных удлинениях и в момент разрыва и удлинения образца в момент разрыва.

(Измененная редакция, Изм. N 2).

1. МЕТОД ОТБОРА ОБРАЗЦОВ

1.1. Образцы для испытания должны иметь форму двусторонней лопатки или кольца.

Форму и тип образца, а также способ изготовления указывают в нормативно-технической документации на изделие.

1.2. Типы и размеры образцов двусторонних лопаток должны соответствовать чертежу и таблице.

мм

Размер

Тип образца

I

II

III

IV

V

VII

— общая длина, не менее

115

110

75

55

115

35

— ширина широкой части

25,0±1,0

25,0±1,0

12,5±1,0

9,0±1,0

25,0±1,0

6,0±0,5

— длина узкой части

33,0±1,0

30,0±1,0

25,0±1,0

12,5±1,0

60,0±1,0

12,0±0,5

— ширина узкой части

6,0

3,0

4,0±0,1

2,0±0,1

6,0

2,0±0,1

— расстояние между линиями, определяющими положение большего радиуса

80±5

80±5

50±3

33±3

103±5

21±2

— малый радиус

14,0±1,0

14,0±1,0

8,0±0,1

7,0±0,5

14,0±1,0

3,0±0,1

— большой радиус

25,0±1,0

20,0±1,0

12,5±1,0

9,0±1,0

25,0±1,0

3,0±0,1

— расстояние между метками

25,0±1,0

25,0±1,0

20,0±1,0

10,0±1,0

50,0±1,0

10,0±1,0

— толщина

1,0±0,2 или 2,0±0,2

Размеры образцов, кроме толщины, определяются размерами штанцевых ножей и после вырубки не контролируются. Предельные отклонения даны для штанцевых ножей.

Образцы типа VII применяют, если из изделий нельзя вырубить образцы типов I-V.

Образцы из готовых изделий могут иметь толщину не более 3 мм.

(Измененная редакция, Изм. N 1, 2).

1.3. Образцы вырубают из вулканизованных пластин толщиной (1,0±0,2) мм или (2,0±0,2) мм ножами. Форма ножа и угол заточки режущей кромки даны в приложении 1.

Вырубные ножи не должны иметь повреждений на режущей кромке.

(Измененная редакция, Изм. N 2).

1.4. Разность между максимальной и минимальной шириной ножа в пределах узкой части не должна превышать 0,05 мм.

1.5. Разность между максимальной и минимальной толщиной образца в узкой части не должна превышать 0,1 мм.

1.6. На узкую часть образца наносят параллельные метки для измерения удлинения. Метки в виде линий наносят штампом с шириной кромок не более 0,5 мм. Схема штампа дана в приложении 1.

1.4-1.6. (Измененная редакция, Изм. N 1).

1.7. Для обеспечения одинаковой установки образцов в захватах допускается наносить установочные метки, расстояние между которыми для образцов типов I и II составляет (50±1) мм, для типа III — (40±1) мм, для типа IV — (25±1) мм, для типа V — (80±1) мм, для типа VII — (20±1) мм.

(Измененная редакция, Изм. N 1, 2).

1.8. Метки должны быть нанесены симметрично относительно центра образца. Краска для нанесения меток не должна вызывать изменения свойств резин, влияющих на результаты испытаний.

Допускается наносить метки другим способом.

1.9. Для лучшего закрепления образцов в захватах применяют образцы с наплывами. Форма и размеры пластин для вырубки таких образцов даны в приложении 1. Наплывы должны быть расположены симметрично относительно центра образца.

1.10. Образцы заготавливают в соответствии с ГОСТ 269.

1.11. Размеры образцов кольцевой формы определяют вырезным устройством или штанцевым ножом, у которых внутренний диаметр должен быть (44,60±0,05) мм, наружный диаметр — (52,60±0,05) мм.

Допускаемое отклонение от заданного значения по ширине кольца не должно быть более ±0,02 мм.

1.12. Толщина образцов должна быть (4,0±0,2) мм или (6,0±0,3) мм.

1.11; 1.12. (Измененная редакция, Изм. N 1).

1.12а. Кольцевой образец для испытания должен быть внутренним диаметром (8,0±0,1) мм, наружным диаметром (10,0±0,1) мм и толщиной (1,0±0,1) мм.

(Введен дополнительно, Изм. N 3).

1.13. Образцы вырубают из пластин штанцевыми ножами или вырезают на машинах с вращающимися ножами. Схема штанцевого ножа для вырубки кольцевых образцов дана в приложении 1.

Допускается заготовка колец вулканизацией в пресс-формах, обеспечивающих размеры по пп.1.11, 1.12. При этом результаты испытаний колец, вырубленных или вырезанных и свулканизованных в пресс-формах, не сопоставимы.

1.14. Количество испытуемых образцов должно быть не менее пяти.

2. АППАРАТУРА

2.1. Машина для испытания должна обеспечивать:

измерение силы при заданных удлинениях и в момент разрыва с погрешностью измерения силы при прямом ходе (нагружении) не более ±1% от измеряемой силы, начиная с 0,2 от наибольшего предельного значения каждого диапазона измерения;

ход активного захвата не менее 1000 мм;

скорость движения активного захвата (500±50) и (1000±50) мм/мин;

измерение расстояния между метками и захватами при растяжении образца устройством с ценой деления шкалы не более 1 мм или градуированным в процентах относительного удлинения. Допускаются другие способы измерения удлинения образцов.

(Измененная редакция, Изм. N 1, 2).

2.2. Предпочтительнее машины с безынерционным силоизмерителем. Для машин с маятниковым силоизмерителем шкалу нагрузок выбирают так, чтобы измеряемая сила была от 20 до 90% предельного значения шкалы.

(Измененная редакция, Изм. N 1).

2.3. Зажимы для образцов лопаток должны обеспечивать надежное закрепление образца по установочным меткам или наплывам при равномерном давлении по всей его ширине.

2.4. Для закрепления образцов кольцевой формы применяют два металлических ролика диаметром (25,00±0,25) мм. Во время испытания нижний ролик должен принудительно вращаться, а верхний — свободно вращаться вокруг своей оси.

2.5. Рекомендуется применять разрывную машину, снабженную устройством, регистрирующим силу в зависимости от удлинения образца.

Допускаемая погрешность регистрации силы на диаграмме должна быть ±2%, а удлинения — ±3% от измеряемой величины.

Допускается применять машины со шкалами, градуированными в единицах напряжения, и с печатающими устройствами. Суммарная погрешность регистрации показателей должна быть ±5%.

Читайте также:  Ложат гипс при растяжении связок

2.6. Испытания при повышенных температурах проводят на машине, снабженной термокамерой, которая должна обеспечивать поддержание необходимой температуры в рабочем объеме (ограниченном захватами машины в момент разрыва образца) с допускаемой погрешностью, °С

До 150

±2,0

От 150 до 200

±3,0

Св. 200

±5,0

2.4-2.6. (Измененная редакция, Изм. N 1, 2).

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Образцы после вулканизации выдерживают в соответствии с требованиями ГОСТ 269.

Для образцов из готовых изделий допускается продолжительность выдержки после вулканизации не менее 6 ч.

(Измененная редакция, Изм. N 1).

3.2. Образцы перед испытанием кондиционируют в соответствии с требованиями ГОСТ 269.

(Измененная редакция, Изм. N 2).

3.3. Толщину образцов измеряют толщиномером по ГОСТ 11358 с нормированным измерительным усилием, ценой деления шкалы 0,01 мм и диаметром измерительной площадки не более 16 мм.

Допускается применять другие виды толщиномеров, соответствующие указанным требованиям, а также измерять толщину образцов другими способами.

Толщину образцов лопаток измеряют на узкой части, а образцов колец — в разных местах по окружности не менее чем в трех точках. За результат измерения принимают среднее арифметическое всех измерений.

3.4. За ширину образца лопатки принимают расстояние между режущими кромками ножа в его узком участке.

3.3, 3.4. (Измененная редакция, Изм. N 1).

3.5. Ширину образца кольца измеряют толщиномером с ценой деления шкалы 0,01 мм с пяткой и наконечниками, профилированными по дуге кольца, не менее чем в трех точках.

За результат измерения принимают среднее арифметическое всех измерений.

3.6. Допускается площадь поперечного сечения кольца () в (см) вычислять исходя из его массы, плотности резины и длины средней окружности образца кольца по формуле

,

где — масса образца, г, определенная с погрешностью взвешивания не более 0,01 г;

— плотность резины, определенная по ГОСТ 267, г/см;

— длина средней окружности кольца с размерами, указанными в п.1.11, составляющая ·4,86 15,2 см.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Испытания проводят при температуре (23±2) °С и скорости движения активного захвата (500±50) мм/мин.

Допускается проводить испытания при повышенных температурах рекомендуемого ряда: 70±2; 100±2; 125±2; 150±2; 200±3; 250±5 °С.

Рекомендуется испытания образцов типа V проводить со скоростью движения активного захвата (1000±50) мм/мин.

(Измененная редакция, Изм. N 2).

4.2. Образец в форме лопатки закрепляют в захватах машины по установочным меткам так, чтобы ось образца совпадала с направлением растяжения. При испытании образцов с наплывами их закрепляют в захватах по краям наплывов.

Образец кольцо надевают на два сближенных ролика.

Примечание. При работе с самоподжимающими зажимами с валиками образец лопатку закрепляют таким образом, чтобы установочные метки находились посередине наружной стороны поджимающих валиков.

(Измененная редакция, Изм. N 1).

4.3. Проверяют нулевые установки приборов, измеряющих силу и удлинение, и приводят в действие механизм растяжения. В ходе непрерывного растяжения образца фиксируют силу, соответствующую заданным удлинениям.

4.4. В момент разрыва образца фиксируют силу и расстояние между метками для образцов лопаток или расстояние между центрами роликов для образцов колец.

Для образцов лопаток типа I допускается измерение расстояния между захватами при отсутствии выползания из них образца при растяжении. При этом относительное удлинение вычисляют по п.5.3.

(Измененная редакция, Изм. N 1).

4.5. Для образцов лопаток типов I, II, V с наплывами допускается измерение расстояния между наплывами при условии применения зажимов, приведенных в приложении 1.

(Измененная редакция, Изм. N 2).

4.6. При установке образцов в зажиме необходимо следить за тем, чтобы наплыв плотно прилегал к поворотной пластинке зажима в соответствии с приложением 1.

4.7. При разрыве образца за пределами узкой части результаты испытаний не учитывают.

(Измененная редакция, Изм. N 1).

4.8. При необходимости определения относительной остаточной деформации после разрыва измерение и вычисление результатов проводят по приложению 2.

(Измененная редакция, Изм. N 2).

4.9. Для испытания при повышенной температуре в камере температуру доводят до заданной, устанавливают в камеру образец и прогревают образцы лопатки не менее 3 мин, а образцы кольца не менее 5 мин.

Допускается прогревать в камере одновременно несколько образцов, при этом время прогрева образцов не должно превышать 15 мин.

(Измененная редакция, Изм. N 1, 2).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Прочность при растяжении выражают условным и истинным значениями, указанными ниже.

5.1.1. Условную прочность () в МПа (кгс/см) образцов лопаток вычисляют по формуле

,

где — сила, вызывающая разрыв образца, МН (кгс);

— среднее значение толщины образца до испытания, м (см);

— ширина образца до испытания, м (см).

5.1.2. Условную прочность () образцов колец в МПа (кгс/см) вычисляют по формуле

или ,

где — сила, вызывающая разрыв образца кольца, МН (кгс);

— среднее значение толщины образца до испытания, м (см);

— ширина образца до испытания, м (см).

5.1.1, 5.1.2. (Измененная редакция, Изм. N 1).

5.2. Относительное удлинение () при разрыве образцов лопаток в процентах вычисляют по формуле

,

где — расстояние между метками в момент разрыва образца, мм;

— расстояние между метками образца до испытания, мм.

(Измененная редакция, Изм. N 1).

5.3. Относительное удлинение () при разрыве образцов с наплывами типов I, II, V и образцов лопаток типа I без наплывов в процентах можно с допустимым приближением вычислять по формуле

,

где — коэффициент пропорциональности.

Значение находят с помощью таблицы, приведенной в приложении 3, а общее относительное удлинение () в процентах вычисляют по формуле

,

где — расстояние между наплывами образца в растянутом состоянии, мм;

— расстояние между наплывами до испытания, мм.

(Измененная редакция, Изм. N 1, 2).

5.4. Относительное удлинение при разрыве образцов колец () в процентах вычисляют по формуле

,

где — длина внутренней окружности образца кольца в момент разрыва, мм, вычисляемая по формуле

,

где — расстояние между центрами роликов в момент разрыва образца, мм;

— диаметр ролика, мм;

— номинальная длина внутренней окружности образца кольца до испытания, мм.

5.5. Условное напряжение при заданном удлинении образцов лопаток () в МПа (кгс/см) вычисляют по формуле

,

где — сила при заданном удлинении, МН (кгс);

— среднее значение толщины образца до испытания, м (см);

— ширина образца до испытания, м (см).

5.6. Условное напряжение при заданном удлинении образцов колец () в МПа (кгс/см) вычисляют по формуле

,

где — сила при заданном удлинении, МН (кгс);

— среднее значение толщины образца до испытания, м (см);

— ширина образца до испытания, м (см).

5.4-5.6. (Измененная редакция, Изм. N 1).

5.7. В качестве дополнительных характеристик резины рекомендуется пользоваться величинами истинного напряжения ?