Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении thumbnail

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Механические характеристики материалов

Чтобы исключить влияние размеров и формы деталей, во-первых, испытания проводят на стандартных образцах ГОСТ 1497-84. Во-вторых, результаты пересчитывают на относительные величины: прикладываемую нагрузку – в механическое напряжение ; абсолютную деформацию – в относительную деформацию .

Перестроенная таким образом диаграмма называется диаграммой условных напряжений (рис. 5). Такое название объясняется тем, что площадь образца в процессе испытания изменяется.

Рис. 5. Диаграмма условных напряжений малоуглеродистой стали

Предел пропорциональности . Значению нагрузки Рпц, при которой нарушается линейная зависимость между нагрузкой Р и удлинением Dl (закон пропорциональности), на диаграмме соответствует точка А. Напряжение, вызванное нагрузкой Рпц, называется пределом пропорциональности и вычисляется по формуле

.                                        (1.1)

Таким образом, пределом пропорциональности называется напряжение, после которого нарушается закон Гука

s = Е e,

где Е – модуль нормальной упругости или модуль жесткости. Модуль E графически изображается тангенсом угла наклона прямолинейного участка к оси абсцисс диаграммы условных напряжений . Величина модуля зависит от природы сплава и изменяется незначительно при изменении состава, структуры или после термической обработки. Например, для стали E = (2,0¸2,2)×105 МПа, для чугуна E = (0,75¸1,6) ×105 МПа.

Предел упругости . Наибольшему значению нагрузки Руп , при которой образец еще не дает при разгрузке остаточной деформации, соответствует точка В. Упругой стадии растяжения образца – участок диаграммы ОВ.

Наибольшее напряжение, до которого остаточная деформация при разгрузке не обнаруживается, называется пределом упругости. Это напряжение вызывается силой Руп и определяется по формуле

.                                           (1.2)

Предел упругости является характеристикой, не связанной с законом Гука. Точка В может располагаться как выше, так и ниже точки А. Эти точки, а следовательно и значения напряжений sпц и sуп близки и обычно различием между ними пренебрегают.

Предел текучести – напряжение, при котором происходит рост деформации без увеличения растягивающей нагрузки. Величина предела текучести вычисляется по формуле

.                                           (1.3)

У большой части технических металлов и сплавов на диаграмме отсутствует явно выраженная площадка текучести. В этом случае предел текучести определяется с допуском 0,2 %, т.е. – условный предел текучести (s0,2) – напряжение, при котором образец получает остаточное (пластическое) удлинение, равное 0,2 % своей расчетной длины:

Читайте также:  Внецентренное растяжение сжатие формула

                                        (1.4)

Предел прочности (временное сопротивление разрыву) – напряжение, соответствующее наибольшей нагрузке Рmax, которую выдерживает образец

.                                        (1.5)

Напряжение в момент отрыва образца. Обозначив через Рк величину растягивающей нагрузки в момент разрыва, получим

.                                              (1.6)

Определяемое таким образом напряжение при разрыве образца не может быть использовано в качестве характеристики механических свойств металлов и сплавов. Оно получено делением нагрузки в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной, вследствие образования шейки.

Механические характеристики sпц, sуп, sт и sв называются характеристиками прочности материалов. В практических расчетах оценка механических свойств преимущественно проводится по пределу текучести sт и пределу прочности sв. Например, для малоуглеродистой стали (0,2 % С), имеющей площадку текучести: sт = 300 МПа, sв = 450 МПа.

Кроме перечисленных выше характеристик прочности материала при испытании на растяжение определяют также относительное удлинение после разрыва d и относительное сужение после разрыва y:

                                (1.7)

                                (1.8)

где: l0 – первоначальная расчетная,

lk – конечная расчетная длина образца;

 – начальная площадь поперечного сечения,

– площадь поперечного сечения в наиболее тонком месте шейки после разрыва (рис. 4).

Механические характеристики d и y являются характеристиками пластичности материала: чем они больше, тем материал пластичнее. Для сталей, например, d = 8 ¸ 45% , y = 40 ¸ 65% .

Порядок проведения испытаний

 Перед испытанием необходимо ознакомиться с устройством машины МИРИ-100К и правилами поведения в лаборатории (вводный инст­руктаж).

До испытания проводится измерение штангенциркулем размеров образца (см. рис. 1) по рабочей части l0 и d0 с погрешностью до 0,1 мм. Для этого проводится измерение длины рабочей зоны, отме­ченной на образце накерненными точками и диаметра образца в трех сечениях расчетной зоны. За расчетный диаметр принимается среднее значение по выполненным трем замерам. Рассчитывается начальная площадь поперечного сечения F о.

На рабочей части образца наносят метки на расстоянии 5 или 10 мм друг от друга. Благодаря меткам можно определить деформацию каждого 5 или 10-миллиметрового промежутка, так и всей рабочей длины образца.

Образец устанавливается в захваты испытательной машины и производится его растяжение.

1. Определение предела текучести и предела прочности. После проведения испытания по машинной диаграмме растяжения определяют нагрузку Рт , соответствующую пределу текучести, и наибольшую разрушающую нагрузку Pmax . Используя значения Рт , Pmax и площадь F0 по формулам (1.3 и 1.4) определяют прочностные характеристики материала sт и sв .

2. Определение характеристик пластичности материала. После испытания части разорванного образца складывают и штангенциркулем измеряют конечную расчетную длину lk . а также толщину в наиболее тонком месте шейки dk. При разрыве образца в средней части расчетной длины измерение lk производится между крайними рисками, как показано на рис. 8. Измерив lk по формулам (1.7–1.8) определяют характеристики пластичности материала на растяжение d и y:

 

Рис. 8. Определение конечной расчетной длины при разрыве образца

в средней части

3. Определение предела пропорциональности. Условный предел пропорциональности находится тогда, когда по диаграмме трудно точно определить точку, до которой сохраняется линейная зависимость между прикладываемой нагрузкой и удлинением образца.

Величину нагрузки Рпц можно с некоторым приближением определить графически на диаграмме растяжения (см. рис. 9,а). Отклонение от линейной зависимости между нагрузкой и удлинением должно достигнуть такой величины, когда тангенс угла наклона кривой деформации с осью нагрузок увеличится на 50% своего значения на линейном упругом участке.

· Из начала координат проводят прямую OM, совпадающую с начальным линейным участком диаграммы растяжения.

· Проводят прямую линию АВ, параллельную оси абсцисс.

· На прямой АВ откладывают отрезок kn, равный половине отрезка mk.

· Через точку n и начало координат проводят прямую О n. Тангенс угла наклона прямой О n к оси ординат (b) и будет на 50 % больше тангенса угла наклона прямолинейного участка диаграммы растяжения OM (a ).

· Параллельно линии О n проводят касательную линию CD к диаграмме растяжения.

· Точка касания К определяет нагрузку Рпц .

· В соответствии с формулой (1.1) рассчитывают значение предела пропорциональности sпц .

4. Определение условного предела текучести с допуском 0,2 %.  Вследствие неполного контакта между головками образца и гнездами для них в траверсе, в начале диаграммы получается криволинейный участок, который следует исключить, продолжив прямолинейный участок диаграммы до пересечения с осью абсцисс в точке О (рис. 9,б).

· Вычисляют величину пластической деформации, которая составляет 0,2%, от начальной расчетной длины l0 .

· Найденную величину увеличивают пропорционально масштабу диаграммы и отрезок ОЕ = 0,002 l0 (см. рис. 9,б) откладывают от точки О.

· Из точки Е проводят прямую, параллельную ОА. Точка пересечения прямой с диаграммой соответствует нагрузке Р0,2.

· По формуле (1.6) рассчитывают значение условного предела текучести s0,2.

5. Определение работы, затраченной на деформацию образца. Для оценки качества испытанного материала необходимо определить работу, затраченную на разрыв образца.

Читайте также:  Признаки растяжения связок в локтевом суставе

· Работу деформации в пределах упругости можно выразить через площадь диаграммы ОАА1О (см. рис. 10).  

· Работа, затраченная на образование пластической деформации, графически определяется площадью OACDК K 1.

· Полная работа (А), затраченная при растяжении образца до его разрушения, численно равна площади диаграммы растяжения OACD KK2O с учетом тех же масштабов сил и удлинений: 1 см2 площади диаграммы соответствует работе деформации 1 кг×см.

Рис. 9. Начальные участка диаграммы растяжения:

а– для определения условного предела пропорциональности;

б– для определения условного предела текучести

· Удельная работа (а) – отношение полной работы А, затраченной на разрушение образца, к начальному объему средней цилиндрической части образца V

а = А / V

характеризует способность материала образца поглощать энергию разрыва, вязкость материала и сопротивляемость его динамическим воздействиям нагрузки.

Для упрощения расчетов, работу, затраченную на пластическое деформирование, определяют как площадь прямоугольника с основанием Dl ост и высотой Рmax (см. рис. 3).

Рис. 10. Полная диаграмма растяжения

Источник

Графическое изображение зависимости между напряжениями (или нагрузками) и деформациями материала (или перемещениями при деформировании) представляет собой диаграмму деформирования.

Испытательные машины имеют специальные приспособления, которые автоматически фиксируют диаграмму растяжения. На диаграмме по оси ординат откладываются действующие осевые нагрузки, а по оси абсцисс — абсолютные деформации.

На рис. 2.2 даны типичные диаграммы растяжения различных металлов. Диаграмма с постепенным переходом из упругой в пластическую область (рис. 2.2, а) свойственна большинству металлов в пластичном состоянии (легированные стали, медь, бронза).

Рис. 2.2. Диаграммы растяжения:

а — для большинства металлов в пластичном состоянии с постепенным переходом из упругой в пластическую область; б — для некоторых металлов в пластичном состоянии со скачкообразным переходом в пластическую область; в — для хрупких металлов

Пластичные материалы разрушаются при больших остаточных деформациях (больших остаточных удлинениях, измеряемых после разрыва).

Диаграмма со скачкообразным переходом в пластическую область в виде четко обозначенной «площадки» текучести (рис. 2.2, б) свойственна некоторым металлам. К таким металлам можно отнести мягкую углеродистую сталь, а также некоторые отожженные марганцовистые и алюминиевые бронзы.

Хрупкие материалы разрушаются при малых остаточных деформациях. К хрупким материалам можно отнести закаленную и неотпущенную сталь, серый чугун.

Характерные участки и точки диаграммы растяжения показаны на рис. 2.3. По оси абсцисс откладывают абсолютные удлинения А/ образца, а по оси ординат — значения растягивающей силы Р. Сначала получим на первом участке диаграммы 0—1 прямолинейную зависимость между силой и удлинением, что отражает закон Гука. При дальнейшем увеличении силы (за точкой 1) прямолинейная зависимость между Р и А/ нарушается. Точка 1 соответствует пределу пропорциональности, т. е. наибольшему напряжению, при котором еще соблюдается закон Гука. Если нагрузку, соответствующую точке 1, обозначить ,Pnu, а начальную площадь сечения образца Fq, то предел пропорциональности

Рис. 2.3. Характерные участки и точки диаграммы растяжения

Несколько выше точки 1 находится точка Г, соответствующая пределу упругости. Если нагрузку, соответствующую точке Г, обозначить через Руп, то предел упругости

По ГОСТу предел упругости задается и обозначается ag os — напряжение, при котором остаточное удлинение достигает 0,05 % длины участка образца, равного базе тензометра.

За точкой Г возникают уже заметные остаточные деформации. В точке 2 диаграммы частицы материала начинают переходить и область пластичности — наступает явление текучести образца.

На диаграмме растяжения получается горизонтальный участок 2—3 (площадка текучести), параллельный оси абсцисс. Для участка 2—3 характерен рост деформации без заметного увеличения нагрузки. Обозначим величину нагрузки, соответствующей площадке текучести 2—3, через Рт. Напряжение ат, отвечающее этой нагрузке, это то напряжение, при котором рост деформации происходит без заметного увеличения нагрузки, оно и является физическим пределом текучести.

Предел текучести (физический) — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (см. рис. 2.3):

Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования.

Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации.

Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести: напряжение, при котором остаточная деформация образца достигает определенного значения, установленного техническими условиями (большего, чем это установлено для предела упругости).

Обычно допуском для величины остаточной деформации при растяжении принято остаточное удлинение 0,2 %. Эта величина называется условным пределом текучести:

где Pq 2 — нагрузка при условном пределе текучести.

При увеличении напряжений сверх предела текучести при растяжении в результате сильной деформации происходит упрочнение металла (изменение его структуры и свойств) и сопротивление деформации увеличивается, поэтому за участком текучести, т. е. за точкой 3, наблюдается подъем кривой растяжения (участок упрочнения). До точки 4 удлинение образца происходит равномерно. Наибольшее значение нагрузки, предшествовавшее разрушению образца, обозначим Рмакс. Точка 4 характеризует максимальное условное напряжение, возникающее в процессе испытания, называемое временным сопротивлением.

Читайте также:  Прочность при растяжении профиля модуль упругости профиля при растяжении

Временное сопротивление ав — условное напряжение, определяемое по отношению действующей силы к исходной площади поперечного сечения образца и отвечающее наибольшей нагрузке ^макс’ предшествовавшей разрушению образца:

В момент, соответствующий нагрузке Рмакс, появляется заметное местное сужение образца (шейка). Если до этого момента образец имел цилиндрическую форму, то теперь растяжение образца сосредоточивается в области шейки.

Участку 4—5 соответствует быстрое уменьшение сечения шейки, вследствие чего растягивающая сила уменьшается, хотя напряжение растет (площадь сечения в шейке ^врFq).

При дальнейшей деформации шейка сужается и образец разрывается по наименьшему сечению FK, где напряжения в действительности достигают наибольшей величины. Таким образом, нарастание пластической деформации при растяжении происходит поэтапно: равномерная пластическая деформация до точки 4 и местная пластическая деформация от точки 4 до точки 5 — момента разрушения.

Моменту разрыва соответствует точка 5, усилие разрыва обозначим Рк. Отношение разрывающего усилия к действительной площади сечения в месте разрыва называется истинным сопротивлением разрыву:

У пластичных металлов в является характеристикой сопротивления пластической деформации, а у хрупких — характеристикой сопротивления разрушению.

Для пластичных материалов, образующих при растяжении шейку, характеристикой сопротивления разрушению служит истинное сопротивление разрыву (при разрушении).

При определении пределов пропорциональности, упругости, текучести и временного сопротивления соответствующая им нагрузка Р относилась к начальной площади поперечного сечения образца, т. е. площади образца до испытания. При растяжении образца в области упругой деформации или близко от нее, т. е. при определении пределов пропорциональности и упругости, можно пренебречь небольшим изменением площади сечения образца.

Однако в области пластической деформации изменение сечения образца становится значительным. Поэтому теоретически возможно для определения временного сопротивления и предела текучести относить соответствующую нагрузку не к исходной площади образца, а к его действительной площади, которую он имеет в момент приложения соответствующей нагрузки.

Напряжения, определенные по отношению приложенной нагрузки к начальной площади образца, называются условными напряжениями, а определенные по отношению к действительной площади — истинными.

На рис. 2.4 дана диаграмма истинных напряжений. В диаграмме по оси абсцисс откладывается относительное удлинение с = Д///0, а по оси ординат — нормальное напряжение а = P/Fq, где /0 и Fq — первоначальные длина и площадь сечения образца. Диаграмма в координатах «напряжения — деформации» на участке 4—5 является условной, как было указано выше. При напряжении, соответ-

Рис. 2.4. Диаграмма истинных напряжений ствующем временному сопротивлению (точка 4), образуется шейка и площадь сечения резко уменьшается, поэтому истинное напряжение увеличивается и истинная диаграмма 4—5′ расположена выше условной диаграммы 4—5.

Следует отметить, что временное сопротивление не совпадает с сопротивлением разрыву и оказывается меньше последнего. Истинное сопротивление разрыву получается делением наибольшей нагрузки Рпч (точка 4′) на истинную уменьшенную площадь сечения FBp в момент начала появления шейки.

Таким образом, истинные напряжения с увеличением деформации непрерывно растут до момента разрушения образца.

Показателем пластической деформации является его абсолютное остаточное удлинение А/0Ст.п ПРИ разрыве (отрезок ОЛ[ на рис. 2.3), так как упругая деформация (отрезок A^2) исчезает после разрыва:

где /0 — начальная длина образца, /к — конечная длина образца (рис. 2.5).

Общее удлинение образца при растяжении слагается из равномерного и сосредоточенного удлинения (за счет образования шейки). Так как размеры испытуемых образцов могут быть различными, то характеристикой пластичности образца служит не его абсолютное, а относительное остаточное удлинение при разрыве 6 — отношение приращения расчетной длины образца после разрыва
к первоначальной расчетной длине /0 в процентах:

Чем больше 5, тем пластичнее металл.

Рис. 2.5. Образцы до растяжения (а) и после растяжения (б)

Другой характеристикой пластичности металла является относительное сужение сечения ц/ после разрыва (в процентах) — отношение разности начальной площади и минимальной площади поперечного сечения образца разрыва к начальной площади поперечного сечения образца.

Если Fq — начальная площадь образца, FK — минимальная площадь сечения в месте образования шейки (в месте разрыва), то относительное сужение (в процентах)

При оценке свойств образцов пластических материалов большое значение имеет их сопротивление пластической деформации. Оно показывает, какое напряжение можно допустить, не вызывая (или вызывая допускаемую величину) пластической деформации, т. е. изменения металла под действием внешних сил.

Свойства, характеризующие сопротивление пластической деформации, можно разделить на две группы: сопротивление металла малым пластическим деформациям и сопротивление металла значительным пластическим деформациям.

Величиной, характеризующей сопротивление малым пластическим деформациям, является предел упругости. Свойства сопротивления металла значительным пластическим деформациям проявляются при напряжениях выше условного предела текучести. Для пластических металлов временное сопротивление определяет сопротивление их значительным пластическим деформациям. Временное сопротивление является основной характеристикой хрупких материалов, разрушающихся при малых пластических деформациях.

В табл. 2.1 приведены механические характеристики некоторых материалов.

Источник