Условие прочности при изгибе сжатии растяжении

Условие прочности при изгибе сжатии растяжении thumbnail

Сложное сопротивление – одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб – это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

условие прочности при косом изгибе

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

условие прочности для сечений имеющих две оси симметрии

где Wx , Wy – осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

прогиб при косом изгибе

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

внутренние силовые факторы при изгибе с растяжением

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

Напряжение в произвольно выбранной точке при изгибе с растяжением

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти при изгибе с растяжением

Условие прочночти имеет вид:

Косой изгиб

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

приведение силы к центру тяжести

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

нормальное напряжение при внецентренном растяжение или сжатие

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Условие прочности для бруса при внецентренном растяжение или сжатие

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Нормальное напряжение при кручении с изгибом

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Касательное напряжение от крутящего момента

Из третьей и четвёртой теории прочности:

эквивалентный крутящий момент

При кручении с изгибом условие прочности имеет вид:

условие прочности при кручении с изгибом

Источник

Сопромат

Эта статья будет посвящена расчетам на прочность, которые выполняются в сопромате и не только. Расчеты на прочность бывают двух видов: проверочные и проектировочные (проектные).

Проверочные расчеты на прочность – это такие расчеты, в ходе которых проверятся прочность элемента заданной формы и размеров, под некоторой нагрузкой.

В ходе проектировочных расчетов на прочность определяются какие-то размеры элемента из условия прочности. Причем, очевидно, что для разных видов деформаций эти условия прочности различны. Также к проектным расчетам можно отнести расчеты на грузоподъемность, когда вычисляется максимальная нагрузка, которую может выдерживать конструкция, не разрушаясь.  Рассмотрим более подробно, как проводится прочностные расчеты для разных случаев.

Читайте также:  Ортез при растяжении связок коленного сустава

Расчеты на прочность при растяжении (сжатии)

Начнем, пожалуй, с самого простого вида деформации растяжения (сжатия). Напряжение при центральном растяжении (сжатии) можно получить, разделив продольную силу на площадь поперечного сечения, а условие прочности выглядит вот так:

uslovie-prochnosti-pri-rastyazhenii-szhatii

где сигма в квадратных скобках – это допустимое напряжение. Которое можно получить, разделив предельное напряжения на коэффициент запаса прочности:

dopustimoe-napryazhenie

Причем, за предельное напряжение для разных материалов принимают разное значение. Для пластичных материалов, например, для малоуглеродистой стали (Ст2, Ст3) принимают предел текучести, а для хрупких (бетон, чугун) берут в качестве предельного напряжения – предел прочности (временное сопротивление). Эти характеристики получают при испытании образцов на растяжение или сжатие на специальных машинах, которые фиксируют характеристики в виде диаграммы.

dlya-plastichnyih-i-dlya-hrupkih

Коэффициент запаса прочности выбирается конструктором исходя из своего личного опыта, назначения проектируемой детали и сферы применения. Обычно, он варьируется от 2 до 6.

В случае если необходимо подобрать размеры сечения, площадь выражают таким образом:

ploshhad

Таким образом, минимальная площадь поперечного сечения при центральном растяжении (сжатии) будет равна отношению продольно силы к допустимому напряжению.

Расчеты на прочность при кручении

При кручении расчеты на прочность в принципе схожи с теми, что проводятся при растяжении. Только здесь вместо нормальных напряжений появляются касательные напряжения.

На кручение работают, чаще всего, детали, которые называются валами. Их назначение заключается в передаче крутящего момента от одного элемента к другому. При этом вал по всей длине имеет круглое поперечное сечение. Условие прочности для круглого поперечного сечения можно записать  так:

uslovie-prochnosti-pri-kruchnii

где Ip — полярный момент сопротивления, ρ — радиус круга. Причем по этой формуле можно определить касательное напряжение в любой точке сечения, варьируя значение ρ. Касательные напряжения распределены неравномерно по сечению, их максимальное значение находится в наиболее удаленных точках сечения:

raspredelenie-kasatelnyih-napryazheniy

Условие прочности, можно записать несколько проще, используя такую геометрическую характеристику как момент сопротивления:

uslovie-prochnosti

То бишь максимальные касательные напряжения равны отношению крутящего момента к полярному моменту сопротивления и должны быть меньше либо равны допустимому напряжению. Геометрические характеристики для круга, упомянутые выше можно найти вот так:

geometricheskie-xarakteristiki

Иногда в задачах встречаются и прямоугольные сечения, для которых момент сопротивления определяется несколько сложнее, но об этом я расскажу в другой статье.

Расчеты на прочность при изгибе

Сопромат

Источник

Министерство транспорта Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Ульяновское высшее авиационное училище

Гражданской авиации (институт)

И.Н. Карпунина

Н.Ф. Леденева

И.А. Мельникова

И.Е. Сиднева

МЕХАНИКА

Методические указания
по выполнению расчетно-графических работ

(раздел «Сопротивление материалов»)

Ульяновск 2012

ББК В2

К 26

Карпунина, И. Н. Механика : метод. указания по выполнению расчетно-графических работ (раздел «Сопротивление материалов») / И. Н. Карпунина, Н. Ф. Леденева, И. А. Мель-никова, И. Е. Сиднева. – Ульяновск : УВАУ ГА(И), 2012. – 44 с.

Содержат задания и методические рекомендации по выполнению расчетно-графических работ по курсу «Механика» (раздел «Сопротивление материалов»). Для каждой темы приведены 30 вариантов схем, для каждой схемы – по 10 вариантов числовых значений.

Предназначены для курсантов направления 161000.62 – Аэронавигация, профилей подготовки 161000.62.08 – Поисковое и аварийно-спасательное обеспечение полетов воздушных судов и 161000.6209 – Обеспечение авиационной безопасности; для курсантов направления 280700.62 – Техносферная безопасность, профиля подготовки 280700.62.02 – Безопасность технологических процессов и производств.

Печатается по решению Редсовета института.

© Ульяновское высшее авиационное училище
гражданской авиации (институт), 2012

оглавление

1. Растяжение и сжатие. 4

1.1. Основные понятия. 4

1.2. Построение эпюр продольных сил, нормальных напряжений
и осевых перемещений. 6

1.3. Условие прочности при растяжении (сжатии) 8

1.4. Задание на расчетно-графическую работу № 1. 9

1.5. Пример выполнения расчетно-графической работы № 1. 9

1.6. Варианты расчетных схем.. 13

2. Сдвиг и кручение. 19

Читайте также:  Растяжение связок стопы подвернул

2.1. Основные понятия. 19

2.2. Задание на расчетно-графическую работу № 2. 20

2.3. Пример выполнения расчетно-графической работы № 2. 21

2.4. Варианты расчетных схем.. 24

3. Изгиб. 28

3.1. Основные понятия. 28

3.2. Задание на расчетно-графическую работу № 3. 30

3.3. Пример выполнения расчетно-графической работы № 3. 30

3.4. Варианты расчетных схем.. 34

Библиографический список. 42

РАСТЯЖЕНИЕ И СЖАТИЕ

Основные понятия

Растяжение (сжатие) – такой вид нагружения, при котором в поперечных сечениях бруса возникает только продольная сила N. При растяжении продольная сила направлена от сечения, при сжатии – к сечению.

На растяжение (сжатие) работают тросы, тяги приводов управления, шатуны, болты и многие другие детали.

Как показывает опыт, плоские поперечные сечения, перпендикулярные оси бруса, остаются плоскими и перпендикулярными к его оси при растяжении или сжатии (рис. 1.1). Это положение называют гипотезой плоских сечений. Из этой гипотезы следует, что напряжение во всех точках поперечного сечения одинаково, а значит, его можно найти как отношение внутренней силы N к площади поперечного сечения А.

Рис. 1.1

В поперечном сечении I–I при растяжении (сжатии) возникает только нормальное напряжение s, так как сила N перпендикулярна плоскости сечения:

. (1.1)

Под действием растягивающей силы (рис. 1.2) происходит удлинение бруса в продольном направлении и одновременное сужение в поперечном направлении.

Рис. 1.2

Абсолютное удлинение бруса:

. (1.2)

Относительное удлинение (относительная продольная деформация):

.(1.3)

Абсолютное сужение:

. (1.4)

Относительное сужение (относительная поперечная деформация):

. (1.5)

При растяжении абсолютная и относительная продольные деформации – величины положительные, поперечная деформация – величина отрицательная (так как ). При сжатии, наоборот, поперечная деформация – положительна, продольная – отрицательна.

Как показывает опыт, продольная и поперечная деформации связаны прямопропорциональной зависимостью:

, (1.6)

где m – коэффициент поперечной деформации (коэффициент Пуассона) – физическая постоянная материала, характеризующая его упругие свойства.

Величина коэффициента Пуассона определяется опытным путем. Его значения для разных материалов лежат в пределах . Для большинства сталей m = 0,3.

Для большинства материалов в определенных пределах справедлив закон Гука. Применительно к растяжению (сжатию) закон Гука формулируется так: нормальное напряжение при растяжении (сжатии) прямопропорционально относительной продольной деформации:

, (1.7)

где Емодуль упругости (модуль Юнга) – физическая постоянная, характеризующая жесткость материала. Для сталей E = 2 × 105 МПа.

Подставим в формулу (1.7) зависимости для определения напряжения (1.1) и деформаций (1.3). Получим

,

откуда

. (1.8)

По формуле (1.8) определяют абсолютное удлинение (укорочение) бруса. Произведение EA называется жесткостью при растяжении (сжатии).

1.2. Построение эпюр продольных сил, нормальных напряжений
и осевых перемещений

Для проведения расчетов на прочность и жесткость необходимо знать, как изменяются продольные силы, нормальные напряжения и осевые перемещения по длине бруса. С этой целью строят специальные графики, называемые эпюрами. Рассмотрим построение эпюр на следующем примере.

Пусть ступенчатый брус с площадью поперечного сечения А в правой части и 2А – в левой нагружен осевыми силами F и 4F (рис. 1.3, а). Последовательность расчета бруса такова:

1. Разбиваем брус на участки, границами которых являются точки приложения сосредоточенных сил и места изменения поперечного сечения.

2. Методом сечений на каждом участке определяем продольную силу N. Расчет начинаем со свободного конца бруса. Разрежем третий участок произвольным поперечным сечением и отбросим левую часть. Покажем оставшуюся часть бруса и заменим действие отброшен-ной части продольной силой N3 (рис. 1.3, б).

Составляем уравнение равновесия:

, , .

Таким образом, третий участок испытывает сжатие ( ). По аналогии на втором и первом участках имеем

, ,

т. е. первые два участка испытывают растяжение.

s

Для построения эпюры продольных сил (рис. 1.3, д) проводим нулевую линию 0–0 параллельно оси бруса. Будем откладывать положительные величины вверх, а отрицательные – вниз от нулевой линии. На первом участке , т. е. первые два участка испытывают
растяжение. Поскольку сечение было сделано произ-вольно, можно утверждать, что в любом сечении на первом участке , т. е. эпюра имеет вид прямо-угольника, высота которого в выбранном масштабе равна силе 3F и отложена вверх от нулевой линии.

Читайте также:  Учет влияния собственного веса при растяжении и сжатии

Рис. 1.3

По аналогии строится эпюра на втором и третьем участках.

3. Находим нормальное напряжение, возникающее в поперечных сечениях бруса на каждом участке:

.

На первом участке продольная сила N1 = 3F, площадь поперечного сечения – 2А, поэтому

.

На втором и третьем участках имеем

, .

Откладывая от нулевой линии найденные значения в масштабе, строим эпюру нормальных напряжений (рис. 1.3, е). Из эпюры видим, в частности, что максимальное напряжение возникает на втором участке.

4. Вычисляем осевые перемещения Δ. В заделке перемещение отсутствует (Δ = 0), поэтому расчеты начнем с заделки. В начале первого участка (z = 0) Δ0 = 0. В конце первого участка (z = 2a) перемещение будет равно удлинению бруса на этом участке, которое найдем по формуле (1.8):

,

.

В конце второго участка (z = 3a) перемещение будет складываться из перемещения правого конца первого участка и удлинения второго участка:

.

По аналогии на третьем участке (z = 4a):

.

В промежуточных точках участков перемещения определяются точками прямых, соединяющих значения Δ на границах участков, так как удлинение прямопропорционально расстоянию до сечения. С учетом этого строим эпюру осевых перемещений (рис. 1.3, ж). Из эпюры, в частности, видно, что свободный конец бруса переместится вправо (знак «+») на величину

Иногда производится расчет по условию жесткости, в соответствии с которым максимальное перемещение сравнивается с допускаемым значением осевого перемещения [Δ]: .

Условие прочности при растяжении (сжатии)

При расчете на прочность по допускаемым напряжениям считается, что прочность обеспечена, если максимальное возникающее в нем напряжение не превышает допускаемого напряжения, поэтому при растяжении (сжатии) условие прочности имеет следующий вид:

, (1.9)

здесь

или

где sТ – предел текучести; sВ– предел прочности; [n] – заданный запас прочности.

Условие прочности позволяет решать три типа задач:

1. Определение необходимых размеров поперечного сечения бруса.

Из неравенства (1.9) находится необходимая площадь поперечного сечения бруса:

.

Если сечение бруса – круг, то, зная площадь сечения, находят его диаметр; если сечение – прямоугольник, то по заданному соотношению сторон находят их размеры. Сечение бруса может быть стандартным профилем (уголок, двутавр, швеллер), в этом случае по найденной площади сечения находят соответствующий профиль по ГОСТам сортамента проката.

2. Определение безопасной нагрузки для бруса.

Из условия прочности (1.9) допустимое значение продольной силы, возникающей в брусе, удовлетворяет следующему условию:

.

По найденному значению Ν определяется и безопасная внешняя осевая нагрузка F. Если продольная сила постоянна по длине бруса, то F = Ν.

3. Проверка прочности бруса.

По заданным нагрузкам и размерам бруса определяется максимальное напряжение, возникающее в нем, и сравнивается с допустимым. Расхождение этих величин характеризует недогрузку или перегрузку бруса:

.

Рекомендуется, чтобы эта величина лежала в пределах ± 5 %.

Если материал бруса по-разному сопротивляется растяжению и сжатию, то проверку прочности ведут отдельно для растянутых и сжатых участков:

, .

Задание на расчетно-графическую работу № 1

Расчетно-графическая работа № 1 по теме «Растяжение и сжатие» включает две задачи: подбор сечений статически определимого бруса из хрупкого материала (чугуна) и определение безопасной нагрузки для статически определимого бруса.

Задача 1. Для чугунного бруса построить эпюру продольных сил. Из расчета на прочность подобрать размеры круглого и квадратного поперечных сечений участков бруса.

Вариант I II III IV V VI VII VIII IX X
F, кH
sВР, МПа
sВС, МПа
[n] 2,5 3,0 3,5 4,0 3,5 2,5 3,0 3,5 4,0 3,5

Варианты расчетных схем к задаче 1 приведены на с. 13–15.

Задача 2. Для стального бруса построить эпюры продольных сил, нормальных напряжений и осевых перемещений. Из расчета на прочность по допускаемым напряжениям определить безопасное значение силы F. Вычислить перемещение точки приложения этой силы.

Вариант I II III IV V VI VII VIII IX X
A, мм2
l, мм
[s], МПа

Варианты расчетных схем к задаче 2 приведены на с. 16–18.

Дата добавления: 2017-02-11; просмотров: 3375 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник