Удлинение бруса при его растяжении 1 см при каком значении длины бруска

Удлинение бруса при его растяжении 1 см при каком значении длины бруска thumbnail

Примеры решения задач по сопротивлению материалов



На этой странице приведен еще один пример решения задачи по Сопромату, где необходимо найти внутренние усилия, напряжения и линейные удлинения на участках и в сечениях бруса, нагруженного продольной силой и собственным весом.

Результаты расчетов оформлены эпюрами продольных сил, напряжений и удлинений бруса.

Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).

***

Расчет стержня

Условие задачи:

Стержень, жестко закрепленный одним концом, состоящий из трех участков длиной l1…l3, и площадью А1…А3, находится под действием собственного веса и силы F, приложенной на координате lF (см. рис. 1).
Материал стрежня – сталь Ст.3.

Требуется:

Построить эпюры продольных сил N, нормальных напряжений σ и перемещений δ.

Исходные данные:
  • l1 = 1,1 м;
  • l2 = 1,0 м;
  • l3 = 0,9 м;
  • А1 = 40 см2;
  • А2 = 20 см2;
  • А3 = 25 см2;
  • F = 70 кН;
  • lF = l1 + l2;
  • Опора расположена вверху.
Справочная информация:

Удельный вес стали Ст.3:   γ = (77…79)×103 Н/м3.
Для расчетов принимаем удельный вес равным   γ = 78×103 Н/м3.
Модуль продольной упругости (модуль Юнга) для стали Ст.3:   Е = 2×1011 Н/м2.

Указания:

Собственный вес стержня можно представить в виде распределенной нагрузки q1 = γ×А1.
Ось z, направление силы F и нумерацию участков вести от опоры.

Решение задачи:

1. Вычерчиваем схему стержня в соответствии с исходными данными.

пример решения задачи по сопромату расчет стержня

2. Расчет ведем от свободного конца стержня, т. е. с III-го участка.
Рассекаем стержень на силовом участке и отбрасываем часть стержня, содержащую опору (верхнюю часть).
Составляем уравнения для нахождения продольной силы N, нормального напряжения σ и удлинения стержня ∆l на силовом участке III:

2.1. Поскольку сила F на участке III не действует, то продольная сила на этом участке представлена только весом стержня, который увеличивается по мере удаления от плоскости 3-3. При этом зависимость величины продольной силы F от координаты z3 будет прямо пропорциональной, поскольку изменяется только координата, а площадь сечения А3и плотность стали γ остается неизменной по всему участку.
Уравнение для продольной силы на участке:

N = q3×z3 = γ×А1×z3,

где
q3 – вес стержня, представленный в виде распределенной нагрузки (Н/м);
z3 – координата рассматриваемого сечения стержня по оси z (м);
А3 – площадь сечения участка III (м2);
γ – удельный вес материала стержня (для стали Ст.3 — γ = 78×103 Н/м3).

Тогда в сечении 3-3 продольная сила будет равна нулю (т. к. и координата и вес равны нулю), а в сечении 2-2 (верхнем сечении участка III) продольная сила определится по формуле:

N3 = q3×z3 = l3× γ×А3 = 0,9×78×103×25×10-4 = 175,5 Н.

2.2. Нормальное напряжение на силовом участке III определяем, как отношение продольной силы к площади участка в каждом рассматриваемом сечении стержня:

σ3 = N3/А3.

Тогда в сечении 3-3 нормальное напряжение будет равно нулю (т. к. продольная сила равна нулю), а в сечении 2-2 (со стороны участка III) определится по формуле:

σ3 = N3/А3 = 175,5/25×10-4 =70222,2 Па   или   σ3 ≈0,07 МПа.

2.3. Удлинение бруса на участке III определяем по закону Гука, с учетом изменяющегося по координате z веса стержня:

∆l3 = ∫[N3/(E×A3)]dz,

где Е – модуль продольной упругости стали;   Е = 2×1011 Н/м2.

Удлинение изменяется по линейной зависимости от нижнего сечения (3-3) до верхнего сечения (2-2) участка, при этом в сечении 3-3 оно будет равно нулю, поскольку продольная сила N3 в этом сечении равна нулю, а в сечении 2-2 удлинение будет равно:

∆l3 = ∫[N3/(E×A3)]dz = ∫[(А3×γ×z3)/(Е×А3)]dz = (γ×l32)/2E =

= 78×103×0,81)/(2×2×1011) ≈ 0,000000158 м или ∆l3 ≈ 0,000158 мм.



3. Проводим расчет продольных сил, нормальных напряжений и удлинений стержня на участках II и I, учитывая, что к сечению 2-2 участка II приложена продольная сила F, которая по отношению к участкам II и I является растягивающей (т. е. положительной).

3.1. Продольная сила на участках II и I будет равна:

В начале участка II:

N21 = F + N3 = 70000 + 175,5 = 70175,5 Н  или  N21 ≈ 70,175 кН.

В конце участка II и в начале участка I:

N22 = N11 = N21 + q2×z2 = N21 + l2× γ×А2 =

= 70175,5 + (1,0×78×103×20×10-4) =70331,5 Н  или  N22 = N11 ≈ 70,33 кН.

В конце участка I:

N12 = N11 + q1×z1 = F + l1× γ×А1 = 70331,5 + (1,1×78×103×40×10-4) =70674,7 Н  или  N12 ≈ 70,67 кН.

3.2. Нормальное напряжение на участках II и I:

В начале участка II:
σ21 = N12 /А2 = 70175/20×10-4 = 35087500 Па  или  σ21 ≈ 35,09 МПа.

В конце участка II:
σ22 = N22/А2 = 70331,5 /20×10-4 = 35 165 750 Па  или  σ22 ≈ 35,16 МПа.

В начале участка I:
σ11 = N11/А1 = 70331,5 /40×10-4 = 17 582 875 Па  или  σ11 ≈ 17,58 МПа.

В конце участка I:
σ12 = N12/А1 = 70674,7 /40×10-4 = 17668675 Па  или  σ12 ≈ 17,7 МПа.

3.3. Удлинение стержня на участках II и I:

∆l2 = (γ×l22)/2E + (N×l2/E×A2) =

Читайте также:  Как проявляется растяжение мышц руки

= 78×103×1)/(2×2×1011) + (70156×1/2×1011×20×10-4) ≈ 0,00017851 м  или  ∆l2 ≈ 0,1785 мм.

∆l1 = (γ×l12)/2E + (N×l1/E×A1) =

= (78×103×1,21)/(2×2×1011) + (70343×1,1/2×1011×40×10-4) ≈ 0,0000991 м или ∆l1 ≈ 0,0991 мм.

4. Определяем перемещения сечений стержня:

  • δ0-0 = 0 мм;
  • δ1-1 = ∆l1 = 0,0991 мм;
  • δ2-2 = ∆l1 + ∆l2 = 0,0991 + 0,1785 = 0,2776 мм;
  • δ3-3 = ∆l1 + ∆l2 + ∆l3= 0,0991 + 0,1785 + 0,000158 = 0,2777 мм.

5. Результаты расчетов сводим в Таблицу 1, и строим эпюры продольных сил, нормальных напряжений и перемещений (см. рис. 1).

Таблица 1. Значения продольной силы, нормального напряжения и удлинения стержня по сечениям силовых участков.

Участок

Границы
участка

Продольная
сила,
N, кН

Нормальное напряжение,
σ, МПа

Перемещение
δ, мм

III

     начало

0,2777

     конец

0,1755

0,07

0,2776

II

     начало

70,175

35,09

0,2776

     конец

70,33

35,16

0,0991

I

     начало

70,33

17,58

0,0991

     конец

70,67

17,70

***

Пример расчета вала на скручивание

Контрольная по сопромату для ВУЗов



Источник

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета напря­жений и перемещений.

Уметь проводить расчеты на прочность и жесткость стати­чески определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).

В сопротивлении материалов принято рассчитывать деформа­ции в относительных единицах:

Между продольной и поперечной деформациями существует за­висимость

где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.

Закон Гука

В пределах упругих деформаций деформации прямо пропорци­ональны нагрузке:

где F — действующая нагрузка; к — коэффициент. В современной форме:

Получим зависимость

где Е — модуль упругости, ха­рактеризует жесткость материала.

В пределах упругости нормальные напряжения пропорциональ­ны относительному удлинению.

Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии

Используем известные формулы.

Относительное удлинение

В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:

где

Δl — абсолютное удлинение, мм;

σ — нормальное напряжение, МПа;

l — начальная длина, мм;

Е — модуль упругости материала, МПа;

N — продольная сила, Н;

А — площадь поперечного сечения, мм2;

Произведение АЕ называют жесткостью сечения.

Выводы

1. Абсолютное удлинение бруса прямо пропорционально вели­чине продольной силы в сечении, длине бруса и обратно пропорцио­нально площади поперечного сечения и модулю упругости.

2. Связь между продольной и поперечной деформациями зави­сит от свойств материала, связь определяется коэффициентом Пуас­сона, называемом коэффициентом поперечной деформации.

Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.

3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная дефор­мация рассчитывается через продольную.

где Δа — поперечное сужение, мм;

ао — начальный поперечный раз­мер, мм.

4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяже­ния (рис. 21.2).

При работе пластические деформации не должны возни­кать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расче­ты в сопротивлении материалов проводятся в зоне упругих де­формаций, где действует закон Гука.

На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.

5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.

Примеры решения задач

Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.

Решение

1. Брус ступенчатый, по­этому следует построить эпюры продольных сил и нормальных напряжений.

Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.

2. Определяем величины нор­мальных напряжений по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру нормальных напряжений.

3. На каждом участке опре­деляем абсолютное удлинение. Результаты алгебраически сумми­руем.

Примечание. Балка за­щемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со сво­бодного конца (справа).

1. Два участка нагружения:

участок 1:

растянут;

участок 2:

2.

 
 

Три участка по напряжениям:

 
 

Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормаль­ных напряжений по его длине, а также определить пере­мещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/’мм3.

Решение

1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.

2. Вычислим напряжения в поперечных сечениях каж­дого участка:

для первого

для второго

для третьего

для четвертого

для пятого

Эпюра нормальных напряжений построена на рис. 2.9, в.

3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса опреде­ляется как алгебраическая сумма удлинений (укорочений) всех его участков:

Подставляя числовые значения, получаем

4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (уко­рочений) участков ///, IV, V:

Читайте также:  Можно париться при растяжении

Подставляя значения из предыдущего расчета, полу­чаем

Таким образом, свободный правый конец бруса пере­мещается вправо, а сечение, где приложена сила Р2, — влево.

5. Вычисленные выше значения перемещений можно полу­чить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя ре­зультаты. Рекомендуем учащемуся проделать это само­стоятельно.

Пример 3. Определить, какое напряжение возни­кает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l1 = 200,2 мм. Е = 2,1*106 Н/мм2.

Решение

Абсолютное удлинение стержня

Продольная деформация стержня

Согласно закону Гука

Пример 4. Стенной кронштейн (рис. 2.10, а) со­стоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F1 = 1 см2, площадь сечения подкоса F2 = 25 см2. Определить горизонтальное и вертикальное перемещения точки В, если в ней под­вешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*105 Н/мм2, дерева Ед = 1,0*104 Н/мм2.

Решение

1. Для определения продольных усилий в стерж­нях АВ и ВС вырезаем узел В. Предполагая, что стерж­ни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия:

откуда

Усилие N2 получилось со знаком минус. Это указы­вает на то, что первоначальное предположение о направ­лении усилия неверно — фактически этот стержень сжат.

2. Вычислим удлинение стальной тяги Δl1и укорочение подкоса Δl2:

где

Тяга АВ удлиняется на Δl1= 2,2 мм; подкос ВС уко­рачивается на Δl1= 7,4 мм.

3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если де­формированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В’ и В2В’, соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В’) дает новое положение точки (шарнира) В.

4. На рис. 2.10, г диаграмма перемещений точки В изо­бражена в более крупном масштабе.

5. Горизонтальное пере­мещение точки В

Вертикальное

где составляющие отрезки определяются из рис. 2.10, г;

Подставляя числовые значения, окончательно получаем

При вычислении перемещений в формулы подстав­ляются абсолютные значения удлинений (укорочений) стержней.

Контрольные вопросы и задания

1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)

2. Что характеризует коэффициент поперечной деформации?

3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.

4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?

5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?

6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?

7. Ответьте на вопросы тестового задания.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Читайте также:  Сложное сопротивление изгиб с растяжением

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Удлинение бруса при его растяжении 1 см при каком значении длины бруска

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник