Удлинение бруса при его растяжении 1 см при каком значении длины бруска
Примеры решения задач по сопротивлению материалов
На этой странице приведен еще один пример решения задачи по Сопромату, где необходимо найти внутренние усилия, напряжения и линейные удлинения на участках и в сечениях бруса, нагруженного продольной силой и собственным весом.
Результаты расчетов оформлены эпюрами продольных сил, напряжений и удлинений бруса.
Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).
***
Расчет стержня
Условие задачи:
Стержень, жестко закрепленный одним концом, состоящий из трех участков длиной l1…l3, и площадью А1…А3, находится под действием собственного веса и силы F, приложенной на координате lF (см. рис. 1).
Материал стрежня – сталь Ст.3.
Требуется:
Построить эпюры продольных сил N, нормальных напряжений σ и перемещений δ.
Исходные данные:
- l1 = 1,1 м;
- l2 = 1,0 м;
- l3 = 0,9 м;
- А1 = 40 см2;
- А2 = 20 см2;
- А3 = 25 см2;
- F = 70 кН;
- lF = l1 + l2;
- Опора расположена вверху.
Справочная информация:
Удельный вес стали Ст.3: γ = (77…79)×103 Н/м3.
Для расчетов принимаем удельный вес равным γ = 78×103 Н/м3.
Модуль продольной упругости (модуль Юнга) для стали Ст.3: Е = 2×1011 Н/м2.
Указания:
Собственный вес стержня можно представить в виде распределенной нагрузки q1 = γ×А1.
Ось z, направление силы F и нумерацию участков вести от опоры.
Решение задачи:
1. Вычерчиваем схему стержня в соответствии с исходными данными.
2. Расчет ведем от свободного конца стержня, т. е. с III-го участка.
Рассекаем стержень на силовом участке и отбрасываем часть стержня, содержащую опору (верхнюю часть).
Составляем уравнения для нахождения продольной силы N, нормального напряжения σ и удлинения стержня ∆l на силовом участке III:
2.1. Поскольку сила F на участке III не действует, то продольная сила на этом участке представлена только весом стержня, который увеличивается по мере удаления от плоскости 3-3. При этом зависимость величины продольной силы F от координаты z3 будет прямо пропорциональной, поскольку изменяется только координата, а площадь сечения А3и плотность стали γ остается неизменной по всему участку.
Уравнение для продольной силы на участке:
N = q3×z3 = γ×А1×z3,
где
q3 – вес стержня, представленный в виде распределенной нагрузки (Н/м);
z3 – координата рассматриваемого сечения стержня по оси z (м);
А3 – площадь сечения участка III (м2);
γ – удельный вес материала стержня (для стали Ст.3 — γ = 78×103 Н/м3).
Тогда в сечении 3-3 продольная сила будет равна нулю (т. к. и координата и вес равны нулю), а в сечении 2-2 (верхнем сечении участка III) продольная сила определится по формуле:
N3 = q3×z3 = l3× γ×А3 = 0,9×78×103×25×10-4 = 175,5 Н.
2.2. Нормальное напряжение на силовом участке III определяем, как отношение продольной силы к площади участка в каждом рассматриваемом сечении стержня:
σ3 = N3/А3.
Тогда в сечении 3-3 нормальное напряжение будет равно нулю (т. к. продольная сила равна нулю), а в сечении 2-2 (со стороны участка III) определится по формуле:
σ3 = N3/А3 = 175,5/25×10-4 =70222,2 Па или σ3 ≈0,07 МПа.
2.3. Удлинение бруса на участке III определяем по закону Гука, с учетом изменяющегося по координате z веса стержня:
∆l3 = ∫[N3/(E×A3)]dz,
где Е – модуль продольной упругости стали; Е = 2×1011 Н/м2.
Удлинение изменяется по линейной зависимости от нижнего сечения (3-3) до верхнего сечения (2-2) участка, при этом в сечении 3-3 оно будет равно нулю, поскольку продольная сила N3 в этом сечении равна нулю, а в сечении 2-2 удлинение будет равно:
∆l3 = ∫[N3/(E×A3)]dz = ∫[(А3×γ×z3)/(Е×А3)]dz = (γ×l32)/2E =
= 78×103×0,81)/(2×2×1011) ≈ 0,000000158 м или ∆l3 ≈ 0,000158 мм.
3. Проводим расчет продольных сил, нормальных напряжений и удлинений стержня на участках II и I, учитывая, что к сечению 2-2 участка II приложена продольная сила F, которая по отношению к участкам II и I является растягивающей (т. е. положительной).
3.1. Продольная сила на участках II и I будет равна:
В начале участка II:
N21 = F + N3 = 70000 + 175,5 = 70175,5 Н или N21 ≈ 70,175 кН.
В конце участка II и в начале участка I:
N22 = N11 = N21 + q2×z2 = N21 + l2× γ×А2 =
= 70175,5 + (1,0×78×103×20×10-4) =70331,5 Н или N22 = N11 ≈ 70,33 кН.
В конце участка I:
N12 = N11 + q1×z1 = F + l1× γ×А1 = 70331,5 + (1,1×78×103×40×10-4) =70674,7 Н или N12 ≈ 70,67 кН.
3.2. Нормальное напряжение на участках II и I:
В начале участка II:
σ21 = N12 /А2 = 70175/20×10-4 = 35087500 Па или σ21 ≈ 35,09 МПа.
В конце участка II:
σ22 = N22/А2 = 70331,5 /20×10-4 = 35 165 750 Па или σ22 ≈ 35,16 МПа.
В начале участка I:
σ11 = N11/А1 = 70331,5 /40×10-4 = 17 582 875 Па или σ11 ≈ 17,58 МПа.
В конце участка I:
σ12 = N12/А1 = 70674,7 /40×10-4 = 17668675 Па или σ12 ≈ 17,7 МПа.
3.3. Удлинение стержня на участках II и I:
∆l2 = (γ×l22)/2E + (N×l2/E×A2) =
= 78×103×1)/(2×2×1011) + (70156×1/2×1011×20×10-4) ≈ 0,00017851 м или ∆l2 ≈ 0,1785 мм.
∆l1 = (γ×l12)/2E + (N×l1/E×A1) =
= (78×103×1,21)/(2×2×1011) + (70343×1,1/2×1011×40×10-4) ≈ 0,0000991 м или ∆l1 ≈ 0,0991 мм.
4. Определяем перемещения сечений стержня:
- δ0-0 = 0 мм;
- δ1-1 = ∆l1 = 0,0991 мм;
- δ2-2 = ∆l1 + ∆l2 = 0,0991 + 0,1785 = 0,2776 мм;
- δ3-3 = ∆l1 + ∆l2 + ∆l3= 0,0991 + 0,1785 + 0,000158 = 0,2777 мм.
5. Результаты расчетов сводим в Таблицу 1, и строим эпюры продольных сил, нормальных напряжений и перемещений (см. рис. 1).
Таблица 1. Значения продольной силы, нормального напряжения и удлинения стержня по сечениям силовых участков.
Участок | Границы | Продольная | Нормальное напряжение, | Перемещение |
III | начало | 0,2777 | ||
конец | 0,1755 | 0,07 | 0,2776 | |
II | начало | 70,175 | 35,09 | 0,2776 |
конец | 70,33 | 35,16 | 0,0991 | |
I | начало | 70,33 | 17,58 | 0,0991 |
конец | 70,67 | 17,70 |
***
Пример расчета вала на скручивание
Контрольная по сопромату для ВУЗов
Источник
Иметь представление о продольных и поперечных деформациях и их связи.
Знать закон Гука, зависимости и формулы для расчета напряжений и перемещений.
Уметь проводить расчеты на прочность и жесткость статически определимых брусьев при растяжении и сжатии.
Деформации при растяжении и сжатии
Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения.
Выводы
1. Абсолютное удлинение бруса прямо пропорционально величине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.
2. Связь между продольной и поперечной деформациями зависит от свойств материала, связь определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.
Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.
3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную.
где Δа — поперечное сужение, мм;
ао — начальный поперечный размер, мм.
4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяжения (рис. 21.2).
При работе пластические деформации не должны возникать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расчеты в сопротивлении материалов проводятся в зоне упругих деформаций, где действует закон Гука.
На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.
5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.
Примеры решения задач
Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.
Решение
1. Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных напряжений.
Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.
2. Определяем величины нормальных напряжений по сечениям с учетом изменений площади поперечного сечения.
Строим эпюру нормальных напряжений.
3. На каждом участке определяем абсолютное удлинение. Результаты алгебраически суммируем.
Примечание. Балка защемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца (справа).
1. Два участка нагружения:
участок 1:
растянут;
участок 2:
2.
Три участка по напряжениям:
Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормальных напряжений по его длине, а также определить перемещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/’мм3.
Решение
1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.
2. Вычислим напряжения в поперечных сечениях каждого участка:
для первого
для второго
для третьего
для четвертого
для пятого
Эпюра нормальных напряжений построена на рис. 2.9, в.
3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса определяется как алгебраическая сумма удлинений (укорочений) всех его участков:
Подставляя числовые значения, получаем
4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (укорочений) участков ///, IV, V:
Подставляя значения из предыдущего расчета, получаем
Таким образом, свободный правый конец бруса перемещается вправо, а сечение, где приложена сила Р2, — влево.
5. Вычисленные выше значения перемещений можно получить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя результаты. Рекомендуем учащемуся проделать это самостоятельно.
Пример 3. Определить, какое напряжение возникает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l1 = 200,2 мм. Е = 2,1*106 Н/мм2.
Решение
Абсолютное удлинение стержня
Продольная деформация стержня
Согласно закону Гука
Пример 4. Стенной кронштейн (рис. 2.10, а) состоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F1 = 1 см2, площадь сечения подкоса F2 = 25 см2. Определить горизонтальное и вертикальное перемещения точки В, если в ней подвешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*105 Н/мм2, дерева Ед = 1,0*104 Н/мм2.
Решение
1. Для определения продольных усилий в стержнях АВ и ВС вырезаем узел В. Предполагая, что стержни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия:
откуда
Усилие N2 получилось со знаком минус. Это указывает на то, что первоначальное предположение о направлении усилия неверно — фактически этот стержень сжат.
2. Вычислим удлинение стальной тяги Δl1и укорочение подкоса Δl2:
где
Тяга АВ удлиняется на Δl1= 2,2 мм; подкос ВС укорачивается на Δl1= 7,4 мм.
3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если деформированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В’ и В2В’, соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В’) дает новое положение точки (шарнира) В.
4. На рис. 2.10, г диаграмма перемещений точки В изображена в более крупном масштабе.
5. Горизонтальное перемещение точки В
Вертикальное
где составляющие отрезки определяются из рис. 2.10, г;
Подставляя числовые значения, окончательно получаем
При вычислении перемещений в формулы подставляются абсолютные значения удлинений (укорочений) стержней.
Контрольные вопросы и задания
1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)
2. Что характеризует коэффициент поперечной деформации?
3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.
4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?
5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?
6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?
7. Ответьте на вопросы тестового задания.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник