Тригонометрический график сжатие и растяжение графика

Тригонометрический график сжатие и растяжение графика thumbnail

Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.

п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX

Общие принципы растяжения и сжатия графиков по оси OX:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом , тангенс и котангенс – с периодом π. Получаем следствие общих принципов:

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ период второй функции уменьшается в p раз: $$ T_2=frac{T_1}{p} $$

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$

Например:

Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sin2x, h(x)=sinfrac{x}{2} $$ Растяжение и сжатие графиков тригонометрических функций по оси OX
Период колебаний функции (g(x)=sin2x) в 2 раза меньше: (T_g=frac{2pi}{2}=pi).
Период колебаний функции (h(x)=sinfrac{x}{2}) в 2 раза больше: (T_h=2cdot 2pi=4pi).

п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY

Общие принципы растяжения и сжатия графиков по оси OY:

При сравнении графиков двух функций $$ y_1=f(x), y_2=Af(x), Agt 1 $$ график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

Общий принцип сжатия графиков:

При сравнении графиков двух функций $$ y_1=f(x), y_2=frac{1}{A}f(x), Agt 1 $$ график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:

  • умножение на параметр (Agt 1) увеличивает амплитуду колебаний в (A) раз;
  • деление на параметр (Agt 1) уменьшает амплитуду колебаний в (A) раз.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=cosx, g(x)=2cosx, h(x)=frac{1}{2}cosx $$ Растяжение и сжатие графиков тригонометрических функций по оси OY
Умножение на (A=2) увеличивает амплитуду колебаний в 2 раза.
Область значений функции (g(x)=2cosx: yin[-2;2]). График растягивается по оси OY.
Деление на (A=2) уменьшает амплитуду колебаний в 2 раза. Область значений функции (h(x)=frac12 cosx: yinleft[-frac12; frac12right]). График сжимается по оси OY.

2) Теперь построим $$ f(x)=tgx, g(x)=2tgx, h(x)=frac{1}{2}tgx $$ Растяжение и сжатие графиков тригонометрических функций по оси OY
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на (A=2) служит поведение функции при (x=fracpi4). $$ fleft(fracpi4right)=tgleft(fracpi4right)=1, gleft(fracpi4right)=2tgleft(fracpi4right)=2, hleft(fracpi4right)=frac12 tgleft(fracpi4right)=frac12 $$ Аналогично – для любого другого значения аргумента x.

п.3. Параллельный перенос графиков тригонометрических функций по оси OX

Общие принципы переноса по оси OX:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x+a), agt 0 $$ график второй функции смещается влево на a по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x-a), agt 0 $$ график второй функции смещается вправо на a по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций (y_1=f(x)) и (y_2=f(xpm a)) говорят, что у второй функции сдвиг по фазе равен (pm a).

Например:

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinleft(x+fracpi4right), h(x)=sinleft(x-fracpi4right) $$ Параллельный перенос графиков тригонометрических функций по оси OX
Функция (g(x)=sinleft(x+fracpi4right)) сдвинута на (fracpi4) влево по сравнению с (f(x))
Функция (h(x)=sinleft(x-fracpi4right)) сдвинута на (fracpi4) вправо по сравнению с (f(x))

п.4. Параллельный перенос графиков тригонометрических функций по оси OY

Общие принципы переноса по оси OY:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)+a, agt 0 $$ график второй функции смещается вверх на a по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)-a, agt 0 $$ график второй функции смещается вниз на a по оси OY по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinx+1, h(x)=sinx-1 $$ Параллельный перенос графиков тригонометрических функций по оси OY
Функция (g(x)=sinx+1) сдвинута на 1 вверх по сравнению c (f(x))
Функция (h(x)=sinx-1) сдвинута на 1 вниз по сравнению с (f(x))

п.5. Общее уравнение синусоиды

Синусоида – плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Asin(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B – вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)

График (y(x)=Acos(cx+d)+B) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.

Например:

Построим график (g(x)=3sinleft(2x+fracpi2right)-1)
По сравнению с (f(x)=sinx):

  • (A=3) — график растянут по оси OY в 3 раза
  • (c=2) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
  • (d=fracpi2) – начальная фаза положительная, график сдвинут на (frac{pi}{2cdot 2}=fracpi4) влево
  • (B=-1) — график сдвинут по оси OY на 1 вниз

Пример построения синусоиды

п.6. Общее уравнение тангенцоиды

Tангенцоидa – плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Atg(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B – вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d- начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)

Читайте также:  Испытание на одноосное растяжение

График (y(x)=Actg(cx+d)+B) также называют тангенцоидой.

Например:

Построим график (g(x)=frac12 tgleft(frac{x}{2}-fracpi3right)+1)
По сравнению с (f(x)=tgx):

  • (A=frac12) — график сжат по оси OY в 2 раза
  • (c=frac12) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
  • (d=-fracpi3) – начальная фаза отрицательная, график сдвинут на (frac{pi}{3cdot 1/2}=frac{2pi}{4}) вправо
  • (B=1) — график сдвинут по оси OY на 1 вверх

Пример построения тангенцоиды

п.7. Примеры

Пример 1.Постройте в одной системе координат графики: $$ f(x)=sinx, g(x)=-sinx, h(x)=cosx $$ Найдите сдвиг по фазе для (g(x)) и (h(x)) в сравнении с (f(x)).
Пример 1
Сдвиг по фазе удобно определять по главной арке синусоиды.
Для (f(x)=sin⁡x) главная арка определена на отрезке (0leq xleq pi)
Для (g(x)=-sin⁡x) главная арка определена на отрезке (-pileq xleq 0), т.е. сдвинута на π влево от (f(x)). Это означает, что: $$ f(x)=g(x+pi), sin⁡x=-sin⁡(x+pi) $$ Для (h(x)=cos⁡x) главная арка определена на отрезке (-fracpi2leq xleq fracpi2), т.е. сдвинута на (fracpi2) влево от (f(x)). Это означает, что: $$ f(x)=hleft(x+fracpi2right), sinx=cosleft(x+fracpi2right) $$

Пример 2. Найдите наименьшие положительные периоды функций:
a) (y=sin5x)
Период синуса (2pi) уменьшается в 5 раз. Получаем: (T=frac{2pi}{5})

б) (y=cospi x)
Период косинуса (2pi) уменьшается в (pi) раз. Получаем: (T=frac{2pi}{pi}=2)

в) (y=tgfrac{x}{4})
Период тангенса (pi) увеличивается в 4 раза. Получаем: (T=4pi)

г) (y=tgleft(2x+frac{pi}{3}right))
Период тангенса (pi) уменьшается в 2 раза. Получаем: (T=fracpi2)

Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctgleft(3x+fracpi6right) $$ По сравнению с (g(x)=tg⁡x):

  • (A=2) — график растянут по оси OY в 2 раза
  • (c=3) — период меньше в 3 раза (T=fracpi3), расстояние между асимптотами (fracpi3), график сжат в 3 раза по оси OX
  • (d=-fracpi6) – начальная фаза положительная, график сдвинут на (frac{pi}{6cdot 3}=frac{pi}{18}) влево

Расположение нулей: $$ tgleft(3x+fracpi6right)=0Rightarrow 3x+fracpi6=pi kRightarrow 3x=-fracpi6+pi kRightarrow x =-frac{pi}{18}+frac{pi k}{3} $$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+fracpi6nefracpi2+pi kRightarrow 3xnefracpi3+pi kRightarrow xnefracpi9+frac{pi k}{3} $$ Пересечение главной ветви с осью OY: (x=0, y=2tgfracpi6=frac{2}{sqrt{3}})
С учетом периода (fracpi3) получаем семейство дополнительных точек для построения графика (left(frac{pi k}{3}; frac{2}{sqrt{3}}right)).
Пример 3

Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) (sinx=sin2x) при (0leq xleq 3pi)
Пример 4a
Ответ: 7 корней

б) (cosfrac{x}{2}=cos2x) при (-2pileq xleq 2pi)
Пример 4б
Ответ: 7 корней

Источник

Список функций, изученных в 7 и 8 классе

Функция

Формула

График

Раздел справочника

Прямая пропорциональность

y = kx

Прямая

7 кл., §37

Линейная функция

y = kx+b

Прямая

7 кл., §38-39

Обратная пропорциональность

$ y = frac{k}{x} $

Гипербола

8 кл., §6

Квадрат числа

$ y=x^2$

Парабола

8 кл., §18

Квадратный трёхчлен

$ y = ax^2+bc+c$

Парабола

8 кл., §28-29

Квадратный корень

$ y = sqrt{x}$

Парабола

8 кл., §22

Растяжение и сжатие графика по оси OX

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), y_2 = f(px) $$

где $p gt 1$, произвольный положительный множитель.

Пусть p = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f(2x) = (2x)^2 = 4x^2 $

$y_2 = y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f(2x) = frac{4}{(2x)} = frac{2}{x}$

$ y_2 = y_1 при x_2 = frac{1}{2} x_1 $

График сжимается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f(2x) = sqrt{2x}$

$y_2=y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Квадратный корень

Теперь сравним пары функций с делением на p:

$$ y_1 = f(x), quad y_2 = f left( frac{x}{p} right), quad p gt 1 $$

Пусть p = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f left(frac{x}{2}right) = left(frac{x}{2}right)^2 = frac{x^2}{4} $

$y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f left(frac{x}{2}right) = frac{4}{x/2} = frac{8}{x}$

$ y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f left(frac{x}{2}right) = sqrt{frac{x}{2}}$

$y_2=y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Квадратный корень

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f(px), quad p gt 1 $$

график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f Biggl(frac{x}{p}Biggr), quad p gt 1 $$

график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Растяжение и сжатие графика по оси OY

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), quad y_2 = Af(x) $$

где $A gt 1$, произвольный положительный множитель.

Пусть A = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = 2f(x) = 2x^2 $

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = 2f(x) = frac{8}{x}$

$ y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = 2f(x) = 2sqrt{x}$

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Квадратный корень

Теперь сравним пары функций с делением на A:

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

Пусть A = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = frac{1}{2}f(x) = frac{x^2}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = frac{1}{2}f(x) = frac{2}{x}$

$ y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = frac{1}{2}f(x) = frac{sqrt{x}}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Квадратный корень

Читайте также:  Растяжение цепи грм пежо 308 ep6

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = Af(x), quad A gt 1 $$

график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Примеры

Пример 1. Постройте в одной координатной плоскости графики функций:

$$ y = sqrt{x}, y = sqrt{3x}, y = sqrt{frac{x}{3}}, y = 3sqrt{x} $$

Сделайте выводы.

Пример 1.

По сравнению с графиком $y = sqrt{x}$:

  • график функции $y = sqrt{3x}$ сжимается в 3 раза по оси OX(←)
  • график функции $y = sqrt{frac{x}{3}}$ растягивается в 3 раза по оси OX(→)
  • график функции $y = 3sqrt{x}$ растягивается в 3 раза по оси OY(↑)

Пример 2*. Постройте в одной координатной плоскости графики функций:

$$ y = f(x), y = f(2x), y = f Biggl(frac{x}{2}Biggr), y = 2f(x) $$

где $f(x) = x^2+3x+2$

Сделайте выводы.

Исходная функция $y = f(x) = x^2+3x+2$

Остальные функции

$$ y = f(2x) = (2x)^2+3 cdot (2x)+2 = 4x^2+6x+2 $$

$$ y = fBiggl(frac{x}{2}Biggr) = Biggl(frac{x}{2}Biggr)^2+3 cdot Biggl(frac{x}{2}Biggr) +2 = frac{x^2}{4}+ frac{3}{2} x+2 $$

$$ y = 2f(x) = 2x^2+6x+4 $$

Получаем:

Пример 2*.

По сравнению с графиком $y = f(x) = x^2+3x+2$:

  • график функции y = f(2x) сжимается в 2 раза по оси OX(→)
  • график функции $y = f left(frac{x}{2}right)$ растягивается в 2 раза по оси OX(←)
  • график функции y = 2f(x) растягивается в 2 раза по оси OY(↑)

Рейтинг пользователей

  • Сергей

    70

    Сергей

  • Милена Печора

    40

    Милена Печора

  • паша синицын

    40

    паша синицын

  • 30

    xilalova0666

  • 30

    PoetickMoon339

Источник

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Тригонометрический график сжатие и растяжение графика

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Тригонометрический график сжатие и растяжение графика

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Тригонометрический график сжатие и растяжение графика

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Тригонометрический график сжатие и растяжение графика

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Тригонометрический график сжатие и растяжение графика

Тригонометрический график сжатие и растяжение графика

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Тригонометрический график сжатие и растяжение графика

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Тригонометрический график сжатие и растяжение графика

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Тригонометрический график сжатие и растяжение графика

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Тригонометрический график сжатие и растяжение графика

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Читайте также:  Растяжение связок тыла стопы

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Тригонометрический график сжатие и растяжение графика

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Тригонометрический график сжатие и растяжение графика

Продолжение — в статье «Построение графиков функций».

Источник

3.1 Сжатие (растяжение) графика вдоль оси ординат

Рассмотрим
функцию вида y=AТригонометрический график сжатие и растяжение графика,
где A>0.
Нетрудно заметить, что при равных
значениях аргумента ординаты графика
этой функции будут в A
раз больше ординат графика функции
y=f(x)
при A>1
или в
Тригонометрический график сжатие и растяжение графикараз меньше ординат графика функцииy=f(x)
при A<1.
Таким образом, получаем следующее
правило.

Для
построения графика функции y=AТригонометрический график сжатие и растяжение графика
следует построить график функции y=f(x)
и увеличить его ординаты в A
раз при A>1
(произвести растяжение графика вдоль
оси ординат) или уменьшить его ординаты
в
Тригонометрический график сжатие и растяжение графикараз приA<1
(произвести сжатие графика вдоль оси
ординат). Полученный график является
графиком функции y=AТригонометрический график сжатие и растяжение графика.

Пример
13.
Построить
график функции y=2cos
x.

Р
е ш е н и е: Строим график функции y=cos
x
(рис.16 – пунктирная кривая) и растяжением
этого графика вдоль оси ординат в 2
раза получаем график функции y=2cos
x
(сплошная кривая).

Пример
14.
Построить
график функции y=Тригонометрический график сжатие и растяжение графикаx2.

Р
е ш е н и е: Строим график функции y=x2
и сжатием этого графика в 3 раза вдоль
оси ординат получаем график функции
y=Тригонометрический график сжатие и растяжение графикаx2
(рис.17).

Тригонометрический график сжатие и растяжение графикаТригонометрический график сжатие и растяжение графика

Рис.16

Рис.17

3.2. Сжатие (растяжение) графика вдоль оси абсцисс

Пусть
требуется построить график функции
y=f(x),
где >0.
Рассмотрим функцию y=f(x),
которая в произвольной точке x=x1
принимает значение y1=f(x1).

Очевидно,
что функция y=f(x)
принимает такое же значение в точке
x=x2,
координата

кТригонометрический график сжатие и растяжение графикаоторой
определяется равенствомx1=x2,
или x2=Тригонометрический график сжатие и растяжение графика,
причём это равенство справедливо для
совокупности всех значений x
из области определения функции.
Следовательно, график функции y=f(x)
оказывается сжатым (при >1)
или растянутым (при <1)
вдоль оси абсцисс относительно графика
функции y=f(x).
Таким образом, получаем следующее
правило.

Для
построения графика функции y=f(x)
следует построить график функции y=f(x)
и уменьшить его абсциссы в 
раз при >1
(произвести сжатие графика вдоль оси
абсцисс) или увеличить его абсциссы в
Тригонометрический график сжатие и растяжение графикараз при<1
(произвести растяжение графика вдоль
оси абсцисс). Полученный график является
графиком функции y=f(x).

П

Рис. 18

ример 15.Построить
график функции
Тригонометрический график сжатие и растяжение графикаx.

РТригонометрический график сжатие и растяжение графикае ш е н и е: Строим график функции
Тригонометрический график сжатие и растяжение графикаx
(рис.18 – пунктирная кривая), и проводя
его сжатие в 
раз вдоль оси абсцисс, получаем график
функции
Тригонометрический график сжатие и растяжение графикаx
(сплошная кривая). Период этой функции
уже равен не 2,
а
Тригонометрический график сжатие и растяжение графика=2.
График пересекает ось абсцисс в точкахx=0,Тригонометрический график сжатие и растяжение графика
.

Пример
16.
Построить
график функции
Тригонометрический график сжатие и растяжение графика.

Р
е ш е н и е: Строим график функции
Тригонометрический график сжатие и растяжение графикаи, растянув его вдоль оси абсцисс в 3
раза, получаем график функцииТригонометрический график сжатие и растяжение графика.

4. Комбинация переноса, отражения и деформации

Рис.
19

Очень часто при построении графиков
функций применяют композицию приёмов,
изложенных в пунктах 1-3. Последовательное
применение ряда таких приёмов позволяет
существенно упростить построение
графика исходной функции и нередко
свести его в конце концов к построению
одной из простейших элементарных
функций.

Рассмотрим,
как с учётом изложенного следует,
например, построить
график функции вида
y=Af(x+a)+b.
Запишем
исходную функцию в виде y=Af
[ 
( x+Тригонометрический график сжатие и растяжение графика
) ] +b
и схему поэтапного её упрощения
(последовательность преобразований):

1.y=Af
[ 
( x+Тригонометрический график сжатие и растяжение графика
) ] + b
; перенос оси абсцисс на b
единиц;

2.y=Af
[ 
( x+Тригонометрический график сжатие и растяжение графика
) ]; перенос оси ординат на
Тригонометрический график сжатие и растяжение графика
единиц;

3. y=Af
[ 
x
]; отражение графика относительно оси
абсцисс

(этап
выполняется только приA<0);

4.y=A·
f
(x); сжатие
или растяжение графика

вдоль оси ординат;

5. y=f
(x) отражение
графика относительно оси ординат

(этап
выполняется только при<0);

6.y=f
(
x); сжатие
или растяжение вдоль оси абсцисс;

7. y=f
( x);

Проводя
построение графика шаг за шагом в
порядке, обратном порядку упрощения
вида функции с учётом всех указанных
правил, получим график исходной функции.

Пример 17. Построить
график функции y=Тригонометрический график сжатие и растяжение графика.

Ре ш е н и е: Схема построения графика :

      1. y=Тригонометрический график сжатие и растяжение графика

      2. xТригонометрический график сжатие и растяжение графика0,
        y=Тригонометрический график сжатие и растяжение графика;

      3. y=Тригонометрический график сжатие и растяжение графика;

      4. у=Тригонометрический график сжатие и растяжение графика;

      5. y=Тригонометрический график сжатие и растяжение графика;

Итак,
построение графика исходной функции
следует начинать с построения графика
функции y=Тригонометрический график сжатие и растяжение графика.
График (рис.20) пересекает ось ординат
в точкеТригонометрический график сжатие и растяжение графика(из условияx=0),
а ось абсцисс в точках x=1
(из условия y=0,
т.е.Тригонометрический график сжатие и растяжение графика=0).

Тригонометрический график сжатие и растяжение графикаВ
заключении отметим, что порядок упрощения
целесообразно проводить в следующей
последовательности.

  1. Использование
    чётности или нечётности функции.

  2. Перенос осей.

  3. Отражение и
    деформация.

Построение
же графика, как обычно, выполняется в
обратной последовательности.

Рис.20

Задание для
самостоятельного выполнения

Ниже
приводятся тексты заданий для
самостоятельного выполнения. Вам
необходимо построить графики функций,
оформить работу отдельно от решений по
другим предметам и выслать в адрес
Хабаровской краевой заочной
физико-математической школы.

М.11.2.1 С
помощью элементарных преобразований
постройте графики следующих функций:

  1. y=x2-2;

  2. y=(x+1)2;

  3. y=sinТригонометрический график сжатие и растяжение графикаx;

  4. y=-
    3sin x;

  5. y=tgТригонометрический график сжатие и растяжение графика;

М.11.2.2.
Написать последовательность преобразований
и построить графики следующих функций:

  1. y=Тригонометрический график сжатие и растяжение графика;

  2. y=(x-1)3+2;

  3. y=ln
    (1-x);

  4. y=tg(-Тригонометрический график сжатие и растяжение графика);

  5. y=Тригонометрический график сжатие и растяжение графикаcos(2x-1)-2.

Хабаровская краевая заочная
физико-математическая школа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник