Сопромат эпюр перемещений растяжение

Сопромат эпюр перемещений растяжение thumbnail

Сопромат эпюр перемещений растяжение

Расчет рамы/фермы

Расчет

статически-неопределимых систем

Расчет

методом конечных элементов

Построение

эпюры моментов (М)

Построение

эпюры поперечных сил (Q)

Построение

эпюры продольных сил (N)

Сопромат эпюр перемещений растяжение

Построение

эпюры моментов (М)

Построение

эпюры поперечных сил (Q)

Построение

эпюры продольных сил (N)

Сопромат эпюр перемещений растяжение

Расчет

геометрических характеристик поперечного сечения

Определение

центра тяжести, моментов инерции, моментов сопротивления

Формирование

подробного отчета

Сопромат эпюр перемещений растяжение

Расчет

столбчатого фундамента

Расчет

ленточного фундамента

Формирование

подробного отчета

Расчет рамы онлайн и построение эпюр рамыРасчет фермы онлайн и построение эпюр фермы

Расчет

статически-неопределимых систем

Расчет

методом конечных элементов

Построение

эпюры моментов (М)

Построение

эпюры поперечных сил (Q)

Построение

эпюры продольных сил (N)

Источник

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

209

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая. 

Сопротивление рассчитывается по формуле:

200

где:

  • Fl – действующие на участке l силы (Н);

  • ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

201

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

202

Рис. 1. Эпюра продольных сил

Рассмотрим случай:

F1 = 5 (кН);

F2 = 3 (кН);

F3 = 6 (кН).

Вычислим:

203

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

204

Рис. 2

Дано:

205

Решение.

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

206

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

207

По полученным данным строим эпюру (рис. 3).

208

Рис. 3

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Читайте также:  Что делать при растяжении связок икроножной мышцы

Источник

1. На рисунке проводиться ось ОХ, совпадающая с продольной осью стержня.

2. Под рисунком стержня проводятся две базовые нулевые линии, параллельно продольной оси стержня. Одна для эпюры продольной силы Nz

Вторая базовая нулевая линия для эпюры нормальных напряжений (Мпа).

3. Стержень разбивается на участки. Для границ участков проводятся вертикальные линии в точках приложения нагрузки и изменения площади поперечного сечения вниз до пересечения с базовыми нулевыми линиями. Нумерация участков начинается со свободной стороны стержня для задачи статически определимой. Если задача статически неопределимая, то нумерация выполняется слева направо.

4. Для определения значения продольной силы используется метод сечений. В середине участка проводится сечение. Указывается направление продольной силы. Положительным считается направление продольной силы, направленной от сечения (растягивает). Значение продольной силы Nz определяется из условия равновесия отсечённой части (сумма проекций на ось ох всех действующих сил равна нулю 0).

5. Вычисляем значение нормальных напряжений.

6. Положительные значения продольной силы и нормального напряжения откладываем вверх от базовой нулевой линии, отрицательные вниз.

7. Проверяем правильность решения задачи по эпюре продольной силы. В точках, где приложена сосредоточенная сила, на эпюре должен быть скачок равный значению продольной силы.

8. Условие прочности проверяем по эпюре нормальных напряжений. Максимальные напряжения, возникающие в конструкции, не должны превышать допускаемых.

Пример №1: Построить эпюры продольной силы N и нормального напряжения σ, проверить на прочность стальной стержень, закрепленный с одной стороны (статически определимая задача). Р1 = 10кН Р2 = 15кН

Р3 =15кН

=100 Мпа; А1 = F; А2 = 2F; F = 100 мм2

Решение:

Параллельно продольной оси стержня проводим две базовые нулевые линии для продольной силы и нормального напряжения.

Разбиваем стержень на участки, начиная со свободной стороны. Проводим вниз вертикальные линии в точках приложения сил и изменения площади поперечного сечения до пересечения с нулевыми линиями. Нумерация участков начинается со свободной стороны стержня.

1 участок:

— на первом участке проводим сечение, перпендикулярное продольной оси, мысленно отбрасываем большую часть и рассматриваем меньшую часть стержня. Заменяем действие отброшенной части на оставленную продольной силой N1. Положительным считается действие от сечения (растягивает).

Рассматриваем равновесие оставленной части, проецируя действующие силы на ось ОХ:

Определяем продольную силу на первом участке:

-N1+ Р1=0 следовательно N1 = Р1=10 кН

Определяем нормальное напряжение на первом участке

2 участок:

-N2+ Р1 — Р2=0 следовательно N2 = Р1-Р2 =10-15= -5 кН

3 участок:

-N3+ Р1 — Р2=0 следовательно N3 = Р1-Р2 =10-15= -5 кН

4 участок:

-N4+ Р1 — Р2+Р3=0 следовательно N4 = Р1-Р2+Р3=10-15+15= 10 кН

Рис. 10.

Метод сечений для определения продольной силы.

Для построения эпюр продольной силы и нормального напряжения задаёмся произвольным масштабом (например: одна клеточка -5 кН и -25 мегапаскалей). Строим эпюры продольной силы и нормального напряжения, откладывая положительные значения вверх от базовой нулевой линии, отрицательные вниз.

Проверяем правильность решения задачи по эпюре продольной силы, в точке приложения сосредоточенной силы на эпюре должен быть скачок, равный действующей силе.

По эпюре нормального напряжения проверяем условие прочности максимальные напряжения должны быть меньше или равны допустимым, значит прочность обеспечена.

Рис.11.

Эпюры продольной силы N и нормального напряжения σ.

СПИСОК ЛИТЕРАТУРЫ

1. Рубашкин А.Г. Лабораторные работы по сопротивлению материалов.- М.: Высшая школа, 1961.-159с.

2. Афанасьев A.M., Марьин В.А. Лабораторный практикум по сопротивлению материалов.- М.: Наука, 1975.-284с.

3. Феодосьев В.И. Сопротивление материалов.- М.: Наука, 1979.-559с.

4. Писаренко Г.С. Сопротивление материалов.- Киев.: Высшая школа, 1973.-667с.

Источник

+- мdA
площадь сечения стержняZB м м м м м м м м м м м м м м м м м м м м м м м м м м м м мL=2(м)N[кН]
Продольная сила N,кН0σ [МПа]
Напряжения ,МПа0δ [мм]
Перемещения характерных сечений ,мм0

Длина стержня l=
м.

Площадь A= = 0.0004 м2

Выбрать тип сечения исходя из условий задачи

Круг

Квадрат

Прямоугольник
Шестигранник

Кольцевое сечение (труба)

Площадь сечения в см2:
A = π · d2/4
= 3.14·(d·0.1)2/4 =
[см2]
Масса 1 м профиля, [кг]:
m = ρ·A·L =
7850· A ·1/10000 = [кг]

ДСТУ 4738:2007/ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый.
(При вычислении массы 1 м проката плотность стали принята равной 7850 кг/м3)
Выбрать диаметр из сортамента:

Диаметр d, мм
55.566.36.5789101112131415161718192021
2223242526272829303132333435363738394041
4243444546474850525354555658606263656768
70727375788082858790929597100105110115120125130
135140145150155160165170175180185190195200210220230240250260
270

ДСТУ ГОСТ 1535:2007/ГОСТ 1535-2006 Прутки медные
(При вычислении массы 1 м проката плотность меди принята равной 8900 кг/м3)
Выбрать диаметр из сортамента:

Диаметры тянутых прутков

Номинальный диаметр d, мм
33.544.555.5678910111213141516171819
202122242527283032333536384041454650
Диаметры прессованных прутков

Номинальный диаметр d, мм
2022252830323538404245485055606570758085
9095100110120130140150160170180

ДСТУ ГОСТ 2060:2007/ГОСТ 2060-2006 Прутки латунные
(При вычислении массы 1 м проката плотность латуни принята равной 8500 кг/м3)
Выбрать диаметр из сортамента:

Диаметры тянутых и прессованных прутков

Номинальный диаметр d, мм
33.544.555.566.577.588.599.5101112131415
1617181920212223242526272830323536384041
4245464850556065707580859095100110120130140150
160170180

ГОСТ 21488-97 Прутки прессованные из алюминия и алюминиевых сплавов
(При вычислении массы 1 м проката плотность алюминия принята равной 2700 кг/м3)
Выбрать диаметр из сортамента:

Номинальный диаметр d, мм
810121416182025303540455055606570758090
100110120130140150160180200250300350400

ГОСТ 26492-85 Прутки катаные из титана и титановых сплавов
(При вычислении массы 1 м проката плотность титана принята равной 4500 кг/м3)
Выбрать диаметр из сортамента:

Номинальный диаметр d, мм
1012141618202225283032353840424548505255
60657075808590100110120130140150

ТУ 48-19-39-85 Прутки вольфрамовые
(При вычислении массы 1 м проката плотность титана принята равной 19300 кг/м3)
Выбрать диаметр из сортамента:

Номинальный диаметр d, мм
33.544.555.566.577.588.599.51010.51111.51213
1415161718

ГОСТ 13083-2016 Прутки из никеля и кремнистого никеля
(При вычислении массы 1 м проката плотность никеля принята равной 8900 кг/м3)
Выбрать диаметр из сортамента:

Диаметры тянутых прутков

Номинальный диаметр d, мм
55.566.577.588.599.510111213141516171819
202122232425262728303234363840
Диаметры горячекатаных прутков

Номинальный диаметр d, мм
424548505560708090

a

Площадь сечения в см2:
A = a2 = (a·0.1)2 =
[см2]
Масса 1 м профиля, [кг]:
m = ρ·A·L =
7850· A ·1/10000 = [кг]
(При вычислении массы 1 м проката плотность стали принята равной 7850 кг/м3)

ДСТУ 4746:2007/ГОСТ 2591-2006 Прокат сортовой стальной горячекатаный квадратный.
Выбрать размер из сортамента:

DAs

D=s/2 + (2A)/(πs)

Толщина стенки трубы s=
мм

Нормальные линейные размеры (диаметры, длины, высоты и др.) должны выбираться в соответствии с таблицей
(размеры в мм)
    Выбрать размер из таблицы:

Ra5
0,10,40,631,01,62,54,06,310,016,025406310016025040063010001600
Ra10
0,10,20,40,50,630,81,01,21,62,02,53,24,05,06,38,010121620253240506380100125160200
2503204005006308001000125016002000
Ra20
0,10,20,40,50,630,710,80,91,01,21,41,61,82,02,22,52,83,23,64,04,55,05,66,37,18,09,0101112
14162022252832364045505663718090100110125140160180200220250280320360400450
5005606307108009001000112012501400160018002000
Ra40
0,10,20,30,40,50,630,710,80,91,01,21,31,41,51,61,71,81,92,02,12,22,42,52,62,83,03,23,43,63,8
4,04,24,54,85,05,35,66,06,36,77,17,58,08,59,09,510,010,511,011,512131415161718192021
2224252628303234363840424548505356606367717580859095100105110120
125130140150160170180190200210220240250260280300320340360380400420450480500530560600630670
710750800850900950100010601120118012501320140015001600170018002000
Дополнительные размеры
2,32,72,93,13,33,53,73,94,14,44,64,95,25,55,86,26,57,07,37,88,28,89,29,810,210,811,211,812,5
13,514,515,516,517,518,519,520,521,52327293133353739415255586570737882889298
102108112115118135145155165175185195205215230270290310315330350370390410440460