Растяжение вдоль оси абсцисс

Растяжение вдоль оси абсцисс thumbnail

3.1 Сжатие (растяжение) графика вдоль оси ординат

Рассмотрим
функцию вида y=AРастяжение вдоль оси абсцисс,
где A>0.
Нетрудно заметить, что при равных
значениях аргумента ординаты графика
этой функции будут в A
раз больше ординат графика функции
y=f(x)
при A>1
или в
Растяжение вдоль оси абсциссраз меньше ординат графика функцииy=f(x)
при A<1.
Таким образом, получаем следующее
правило.

Для
построения графика функции y=AРастяжение вдоль оси абсцисс
следует построить график функции y=f(x)
и увеличить его ординаты в A
раз при A>1
(произвести растяжение графика вдоль
оси ординат) или уменьшить его ординаты
в
Растяжение вдоль оси абсциссраз приA<1
(произвести сжатие графика вдоль оси
ординат). Полученный график является
графиком функции y=AРастяжение вдоль оси абсцисс.

Пример
13.
Построить
график функции y=2cos
x.

Р
е ш е н и е: Строим график функции y=cos
x
(рис.16 – пунктирная кривая) и растяжением
этого графика вдоль оси ординат в 2
раза получаем график функции y=2cos
x
(сплошная кривая).

Пример
14.
Построить
график функции y=Растяжение вдоль оси абсциссx2.

Р
е ш е н и е: Строим график функции y=x2
и сжатием этого графика в 3 раза вдоль
оси ординат получаем график функции
y=Растяжение вдоль оси абсциссx2
(рис.17).

Растяжение вдоль оси абсциссРастяжение вдоль оси абсцисс

Рис.16

Рис.17

3.2. Сжатие (растяжение) графика вдоль оси абсцисс

Пусть
требуется построить график функции
y=f(x),
где >0.
Рассмотрим функцию y=f(x),
которая в произвольной точке x=x1
принимает значение y1=f(x1).

Очевидно,
что функция y=f(x)
принимает такое же значение в точке
x=x2,
координата

кРастяжение вдоль оси абсциссоторой
определяется равенствомx1=x2,
или x2=Растяжение вдоль оси абсцисс,
причём это равенство справедливо для
совокупности всех значений x
из области определения функции.
Следовательно, график функции y=f(x)
оказывается сжатым (при >1)
или растянутым (при <1)
вдоль оси абсцисс относительно графика
функции y=f(x).
Таким образом, получаем следующее
правило.

Для
построения графика функции y=f(x)
следует построить график функции y=f(x)
и уменьшить его абсциссы в 
раз при >1
(произвести сжатие графика вдоль оси
абсцисс) или увеличить его абсциссы в
Растяжение вдоль оси абсциссраз при<1
(произвести растяжение графика вдоль
оси абсцисс). Полученный график является
графиком функции y=f(x).

П

Рис. 18

ример 15.Построить
график функции
Растяжение вдоль оси абсциссx.

РРастяжение вдоль оси абсциссе ш е н и е: Строим график функции
Растяжение вдоль оси абсциссx
(рис.18 – пунктирная кривая), и проводя
его сжатие в 
раз вдоль оси абсцисс, получаем график
функции
Растяжение вдоль оси абсциссx
(сплошная кривая). Период этой функции
уже равен не 2,
а
Растяжение вдоль оси абсцисс=2.
График пересекает ось абсцисс в точкахx=0,Растяжение вдоль оси абсцисс
.

Пример
16.
Построить
график функции
Растяжение вдоль оси абсцисс.

Р
е ш е н и е: Строим график функции
Растяжение вдоль оси абсцисси, растянув его вдоль оси абсцисс в 3
раза, получаем график функцииРастяжение вдоль оси абсцисс.

4. Комбинация переноса, отражения и деформации

Рис.
19

Очень часто при построении графиков
функций применяют композицию приёмов,
изложенных в пунктах 1-3. Последовательное
применение ряда таких приёмов позволяет
существенно упростить построение
графика исходной функции и нередко
свести его в конце концов к построению
одной из простейших элементарных
функций.

Рассмотрим,
как с учётом изложенного следует,
например, построить
график функции вида
y=Af(x+a)+b.
Запишем
исходную функцию в виде y=Af
[ 
( x+Растяжение вдоль оси абсцисс
) ] +b
и схему поэтапного её упрощения
(последовательность преобразований):

1Растяжение вдоль оси абсциссРастяжение вдоль оси абсциссРастяжение вдоль оси абсцисс.y=Af
[ 
( x+Растяжение вдоль оси абсцисс
) ] + b
; перенос оси абсцисс на b
единиц;

2Растяжение вдоль оси абсциссРастяжение вдоль оси абсциссРастяжение вдоль оси абсцисс.y=Af
[ 
( x+Растяжение вдоль оси абсцисс
) ]; перенос оси ординат на
Растяжение вдоль оси абсцисс
единиц;

3. y=Af
[ 
x
]; отражение графика относительно оси
абсцисс

(Растяжение вдоль оси абсциссэтап
выполняется только приA<0);

4Растяжение вдоль оси абсцисс.y=A·
f
(x); сжатие
или растяжение графика

вдоль оси ординат;

5. y=f
(x) отражение
графика относительно оси ординат

(Растяжение вдоль оси абсциссэтап
выполняется только при<0);

6Растяжение вдоль оси абсцисс.y=f
(
x); сжатие
или растяжение вдоль оси абсцисс;

7. y=f
( x);

Проводя
построение графика шаг за шагом в
порядке, обратном порядку упрощения
вида функции с учётом всех указанных
правил, получим график исходной функции.

Пример 17. Построить
график функции y=Растяжение вдоль оси абсцисс.

РРастяжение вдоль оси абсциссРастяжение вдоль оси абсциссе ш е н и е: Схема построения графика :

      1. yРастяжение вдоль оси абсциссРастяжение вдоль оси абсцисс=Растяжение вдоль оси абсцисс

      2. xРастяжение вдоль оси абсцисс0,
        y=Растяжение вдоль оси абсцисс;

      3. y=Растяжение вдоль оси абсцисс;

      4. у=Растяжение вдоль оси абсцисс;

      5. y=Растяжение вдоль оси абсцисс;

Итак,
построение графика исходной функции
следует начинать с построения графика
функции y=Растяжение вдоль оси абсцисс.
График (рис.20) пересекает ось ординат
в точкеРастяжение вдоль оси абсцисс(из условияx=0),
а ось абсцисс в точках x=1
(из условия y=0,
т.е.Растяжение вдоль оси абсцисс=0).

Растяжение вдоль оси абсциссВ
заключении отметим, что порядок упрощения
целесообразно проводить в следующей
последовательности.

  1. Использование
    чётности или нечётности функции.

  2. Перенос осей.

  3. Отражение и
    деформация.

Построение
же графика, как обычно, выполняется в
обратной последовательности.

Рис.20

Задание для
самостоятельного выполнения

Ниже
приводятся тексты заданий для
самостоятельного выполнения. Вам
необходимо построить графики функций,
оформить работу отдельно от решений по
другим предметам и выслать в адрес
Хабаровской краевой заочной
физико-математической школы.

М.11.2.1 С
помощью элементарных преобразований
постройте графики следующих функций:

  1. y=x2-2;

  2. y=(x+1)2;

  3. y=sinРастяжение вдоль оси абсциссx;

  4. y=-
    3sin x;

  5. y=tgРастяжение вдоль оси абсцисс;

М.11.2.2.
Написать последовательность преобразований
и построить графики следующих функций:

  1. y=Растяжение вдоль оси абсцисс;

  2. y=(x-1)3+2;

  3. y=ln
    (1-x);

  4. y=tg(-Растяжение вдоль оси абсцисс);

  5. y=Растяжение вдоль оси абсциссcos(2x-1)-2.

Хабаровская краевая заочная
физико-математическая школа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Читайте также:  Как разработать голеностоп после растяжения связок

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Растяжение вдоль оси абсцисс

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Растяжение вдоль оси абсцисс

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Растяжение вдоль оси абсцисс

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Растяжение вдоль оси абсцисс

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Растяжение вдоль оси абсцисс

Растяжение вдоль оси абсцисс

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Растяжение вдоль оси абсцисс

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Растяжение вдоль оси абсцисс

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Растяжение вдоль оси абсцисс

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Растяжение вдоль оси абсцисс

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Растяжение вдоль оси абсцисс

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Растяжение вдоль оси абсцисс

Продолжение — в статье «Построение графиков функций».

Источник

Ìàñøòàáèðîâàíèå — îïåðàöèÿ ñæàòèÿ èëè ðàñòÿæåíèÿ ãðàôèêà ôóíêöèè âäîëü îñåé àáñöèññ è îðäèíàò.

Òî, ÷òî òðåáóåòñÿ âûïîëíèòü ìàñøòàáèðîâàíèå, ïîêàçûâàþò êîýôôèöèåíòû k1 è k2 â óðàâíåíèè y = ± k1 fk2 (x + a))+b. Îíè äîëæíû áûòü íå ðàâíû åäèíèöå.

Êîãäà 0 < k1,2 <1, ñîâåðøàåì ñæàòèå ãðàôèêà îòíîñèòåëüíî y è ðàñòÿæåíèå îòíîñèòåëüíî x , êîãäà k1,2>1, âûïîëíÿåì ðàñòÿæåíèå âäîëü îñè îðäèíàò è ñæàòèå âäîëü îñè àáñöèññ.

Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = f (k2x) ,òî åñëè k2 >1 – ïðîèçâîäèì ñæàòèå ãðàôèêà ê îñè îðäèíàò (y) â k ðàç, à åñëè 0 < k2<1 — ðàñòÿæåíèå ãðàôèêà îò îñè îðäèíàò â 1/k.

Ìàñøòàáèðîâàíèå - ïðåîáðàçîâàíèå ãðàôèêà ôóíêöèè.

Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = k1 f (x) , òî åñëè k1 >1 — îñóùåñòâëÿåì ðàñòÿæåíèå ãðàôèêà îò îñè àáñöèññ (0x) â k ðàç, à åñëè 0 < k1<1 — ñæàòèå ãðàôèêà ê îñè àáñöèññ â 1/k.

Ãðàôèê ôóíêöèè. Ìàñøòàáèðîâàíèå - ïåðâûé ýòàï ïðåîáðàçîâàíèÿ ãðàôèêà ôóíêöèè.

  

Êàëüêóëÿòîðû ïî àëãåáðå

Ðåøåíèÿ, ïîäñêàçêè è ó÷åáíèê ëèíåéíîé àëãåáðû îíëàéí (âñå êàëüêóëÿòîðû ïî àëãåáðå).
Êàëüêóëÿòîðû ïî àëãåáðå
Читайте также:  Фаза растяжения у растений
  

Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû

Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû: êîðíè, äðîáè, ñòåïåíè, óðàâíåíèÿ, ôèãóðû, ñèñòåìû ñ÷èñëåíèÿ è äðóãèå êàëüêóëÿòîðû.
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû
  

Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó àëãåáðû äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé
  

Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ.

Ïîêàçàòåëüíîé íàçûâàåòñÿ ôóíêöèÿ ó = à õ , â êîòîðîé à – ýòî ïîñòîÿííîå ïîëîæèòåëüíîå ÷èñëî.
Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ.
  

Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè.

Åñëè ïåðåìåííûå õ, ó âûðàæàþòñÿ ïîñðåäñòâîì óðàâíåíèÿ Àõ + By = Ñ , ïðè ýòîì ÷èñëà À,  èëè ïî ìåíüøåé ìåðå îäíî èç íèõ, íå ðàâíî íóëþ, òî ãðàôèêîì ôóíêöèîíàëüíîé çàâèñèìîñòè ÿâëÿåòñÿ ïðÿìàÿ ëèíèÿ .
Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè.

Источник

Преобразования графиков: параллельный перенос, симметрия

В чистом виде основные элементарные функции встречаются, к сожалению, не так часто. Гораздо чаще приходится иметь дело с элементарными функциями, полученными из основных элементарных при помощи добавления констант и коэффициентов. Графики таких функций можно строить, применяя геометрические преобразования к графикам соответствующих основных элементарных функций (или переходить к новой системе координат).

С помощью геометрических преобразований графика функции f(x) может быть построен график любой функции вида ( pm {k_1} cdot f( pm {k_2} cdot (x + a)) + b,) где ({k_1},{k_2} > 0) — коэффициенты сжатия или растяжения (в зависимости от их значений) вдоль осей oy и ox соответственно. Знаки «минус» перед коэффициентами указывают на симметричное отображение графика относительно координатных осей, а и b определяют сдвиг относительно осей абсцисс и ординат соответственно.

Таким образом, различают три вида геометрических преобразований графика функции:

1. Первый вид — масштабирование (сжатие или растяжение) вдоль осей абсцисс и ординат.

На необходимость масштабирования указывают коэффициенты k1 и k2, отличные от единицы, если (0 < {k_1} < 1,0 < {k_2} < 1) , то происходит сжатие графика относительно oy и растяжение относительно ox , если ({k_1},{k_2} > 1) , то производим растяжение вдоль оси ординат и сжатие вдоль оси абсцисс.

2. Второй вид — симметричное (зеркальное) отображение относительно координатных осей.

На необходимость этого преобразования указывают знаки «минус» перед коэффициентами k1 (в этом случае симметрично отображаем график относительно оси ox ) и k2 (в этом случае симметрично отображаем график относительно оси oy). Если знаков «минус» нет, то этот шаг пропускается.

3. Третий вид — параллельный перенос (сдвиг) вдоль осей ox и oy.

Это преобразование производится в последнюю очередь при наличии коэффициентов a и b, отличных от нуля. При положительном а график сдвигается влево на |а| единиц, при отрицательных а — вправо на |а| единиц. При положительном b график функции параллельно переносим вверх на |b| единиц, при отрицательном b — вниз на |b| единиц.

Рассмотрим примеры

Пример1

Построить графики функции (y = {x^2} — 10) и (y = {x^2} + 10) в одной координатной плоскости.

Построим для начала график функции (y = {x^2}) , это парабола с вершиной в точке (0;0) и ветвями вверх.

Для построения искомого графика функции (y = {x^2} — 10) необходимо параболу параллельно перенести в отрицательном направлении по У, т.е. вниз. Для построения искомого графика функции (y = {x^2} + 10) необходимо параболу параллельно перенести в положительном направлении по У, т.е. вверх.

Пример2

Построить графики функций (y = {left( {x + 2} right)^2}) и (y = {left( {x — 2} right)^2}) .

За основу возьмем тот же график параболы, но параллельный перенос будем осуществлять вдоль оси Ох. По правилу переноса график сдвинется влево на 2 единицы для функции (y = {left( {x + 2} right)^2}) . А для функции (y = {left( {x — 2} right)^2}) сдвиг произойдет вправо.

Пример3

Построить график функции (y = — {x^2}) .

За основу возьмем тот же график параболы. Производимое изменение графика носит название -отображение. Картинка получится симметричной исходной параболе, симметрия относительно Ох.

Пример4

Построить графики функций (y = left( {3{x^2}} right)) и (y = left( {frac{1}{3}{x^2}} right)) .

Для построения этих графиков произведем сжатие графика (y = {x^2}) для первой функции и растяжение – для второй.

Источник

Преобразования
графиков функций – это линейные преобразования функции 
y
=
f(x)  или её аргумента  х  к виду



y
=
af(kx
+
b) + m,



а так же
преобразование с использованием модуля.

Зная,
как строить графики функции  y =
f(x), где 



y
= kx + b,

y
= ax
2,

y
= xn,

y
=
k/x,

y
= ax,

y
=
logax,

можно
построить график функции



y
=
af(kx
+
b) + m.



ОБЩИЙ ВИД ПРЕОБРАЗОВАНИЯ ФУНКЦИИ



Параллельный
перенос графика вдоль оси абсцисс на
 |b|  единиц.



y
=
f(x
b)

вправо,
если  b ˃ 0;

Читайте также:  Работа растяжения пружины формула

влево,
если  b < 0.



y
=
f(x+
b)

влево,
если  b ˃ 0;

вправо,
если  b < 0.



ПРИМЕР:



Построить график функции



у =
(х + 2)3.



Построим график функции  у =
х3 и
параллельно перенесём его влево на 
2  единицы вдоль оси  х  (так как  2 ˃ 0). Получим график
функции


у = (х + 2)3.

ПРИМЕР:

Построить график функции



у =
(х – 3)2.



Построим график функции  у =
х2 и
параллельно перенесём его вправо на 
3  единицы вдоль оси  х  (так как  –3 < 0). Получим график
функции



у =
(х – 3)2.

Параллельный
перенос графика вдоль оси ординат на
  |mединиц.



y
=
f(x) + m

вверх,
если  m ˃ 0;

вниз,
если  m < 0.



ПРИМЕР:



Построить график функции



у =
х2 – 5.



Построим график функции  у =
х2 и
параллельно перенесём его вниз на 
5  единиц вдоль оси  у  (так как  –5 < 0). получим график
функции



у =
х2 – 5.

ПРИМЕР:



Построить график функции



у =
√͞͞͞͞͞х  + 4.



Построим график функции  у =
√͞͞͞͞͞х   и параллельно перенесём его вверх на  4  единицы
вдоль оси 
у  (так как 
4 ˃ 0). Получим график функции



у =
√͞͞͞͞͞х  + 4.

Отражение
графика.



y
=
f(–x)

Симметричное
отражение графика относительно оси ординат.



ПРИМЕР:



Построить график функции



у =
х + 3.



Построим график функции  у =
х + 3  и отобразим
полученный график симметрично относительно оси 
у  и получим график
функции



у =
х + 3

y
= –
f(x)

Симметричное
отражение графика относительно оси абсцисс.



ПРИМЕР:



Построить график функции



у =
–(х – 3)2.



Построим график функции  у =
х2 и
параллельно перенесём его вправо на 
3  единицы вдоль оси  х  (так как  –3 < 0). получим график
функции



у =
(х – 3)2.



отобразим полученный график симметрично относительно
оси 
х  и получим
график функции



у =
–(х – 3)2.

Сжатие
и растяжение графика.



y
=
f(kx)

При  k ˃ 1
сжатие графика к оси ординат в  k  раз,

при  0 < k<
1
– растяжение графика от оси ординат в  k  раз,



ПРИМЕР:



Построить график функции



у =
(3х)2.



Построим график функции  у =
х2. Выполним
сжатие графика функции  в три раза до оси 
у  и получим
график функции



у =
(3х)2.

ПРИМЕР:



Построить график функции

Построим график функции  у =
√͞͞͞͞͞х. Выполним
растяжение графика функции в
1/от оси 
у  и получим график
функции

y
=
kf(x)

При  k ˃ 1
растяжение графика от оси абсцисс в  k  раз,

при  0 < k<
1
– сжатие графика к оси абсцисс в  k  раз.



ПРИМЕР:



Построить график функции



у =
3√͞͞͞͞͞х.



Построим график функции  у =
√͞͞͞͞͞х .
Выполним
растяжение графика функции в три раза относительно оси 
х  и получим
график функции



у =
3√͞͞͞͞͞х.

ПРИМЕР:



Построить график функции



у =
1/3 х3.



Построим график функции  у =
х3. Выполним
сжатие графика функции  
у = х3  в три раза к оси  х  и получим
график функции



у =
1/3 х3.

Преобразования
графика с модулем.



у = |f(x)|

При  f(x)
˃ 0 – график остаётся без изменений,

при  f(x) <
0 – график симметрично отражается
относительно оси абсцисс.



ПРИМЕР:



Построить график функции



у =
|х2 – 6|



Построим график функции  у = х2. Параллельно переносимо график вниз на  6  единиц
вдоль оси 
у  и получим график функции



у =
х2 – 6.



Отобразим симметрично относительно оси  х  ту
часть графика, которая находится под осью, и получим график функции



у =
|х2 – 6|

ПРИМЕР:



Построить график функции



у =
|х3|



Отобразим симметрично относительно оси  х  ту
часть графика, которая находится под осью, и получим график функции



у =
|х3|

у =f(|x|)

При  x ≥ 0 – график остаётся без изменений,

при  x < 0 – график симметрично отражается относительно оси ординат.



ПРИМЕР:



Построить график функции



у =
(|x| – 1)2.



Построим график функции  у =
х2 и
параллельно перенесём его вправо на 
1  единицы вдоль оси  х  и получим график
функции



у =
(х – 1)2.



Оставляем ту часть графика, которая соответствует
неотрицательным значением  х. Симметрично
отображаем относительно оси 
у  часть полученного графика для неотрицательных
х  и получаем график
функции



у
= (|x|
– 1)2.

ПРИМЕР:



Построить график функции



у =
5|x| – 3.



Построим график функции  у =
5х  и
параллельно перенесём его вниз на 
3  единицы вдоль оси  у  и
получим график функции



у =
5x – 3.



Оставим ту часть графика, которая соответствует
неотрицательным значениям 
х.
Симметрично отобразим относительно оси 
у  часть полученного графика для неотрицательных  х  и получим
график функции



у =
5|x| – 3.

Источник