Растяжение и сжатие продольные силы и нормальные напряжения

Растяжение и сжатие продольные силы и нормальные напряжения thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Читайте также:  Аппарат для физиотерапии при растяжении

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Растяжение и сжатие продольные силы и нормальные напряжения

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Определение нормальной силы

Центральное растяжение (сжатие) – одно из наиболее простых видов нагружения. Методом сечений в поперечном сечении бруса обнаруживается только один внутренний силовой фактор – нормальная сила. Ее вектор перпендикулярен к поперечному сечению и направлен вдоль продольной оси бруса. Брус, работающий на растяжение-сжатие, принято называть стержнем.

Согласно методу сечений величина и направление продольной силы определяются из уравнения равновесия, составленного для отсеченной части бруса:

Растяжение и сжатие продольные силы и нормальные напряжения (2.9)

Таким образом, продольная (нормальная) сила о произвольном сечении бруса численно равна алгебраической сулеме проекций па продольную ось всех внешних (активных и реактивных) сил, приложенных к отсеченной части.

Читайте также:  Упражнения после растяжения плечевого сустава

В общем случае

Растяжение и сжатие продольные силы и нормальные напряжения (2.10)

где Растяжение и сжатие продольные силы и нормальные напряжения – интенсивность нагрузки, распределенной вдоль оси бруса на участке от 0 до Растяжение и сжатие продольные силы и нормальные напряжения.

Продольная сила Растяжение и сжатие продольные силы и нормальные напряжения считается положительной, если она вызывает растяжение, т.е. направлена от сечения. В поперечном сечении бруса она является равнодействующей внутренних нормальных сил, возникающих в этом сечении.

График функции Растяжение и сжатие продольные силы и нормальные напряжения называется эпюрой нормальных сил. Из выражения (2.10) следует, что

Растяжение и сжатие продольные силы и нормальные напряжения (2.11)

т.е. интенсивность распределенной нагрузки в каждом сечении равна по величине и знаку тангенсу угла наклона касательной к эпюре Растяжение и сжатие продольные силы и нормальные напряжения в соответствующей рассматриваемому сечению точке эпюры.

Нормальные напряжения и деформации

При растяжении (сжатии) бруса в поперечных сечениях возникают только нормальные напряжения. Чтобы задача определения по известным N А имела единственное решение, необходимо установить закон распределения σ(x) по сечению. Для этого используется гипотеза плоских сечений (гипотеза Бернулли): сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к его оси и при деформации. Поперечные сечения лишь перемещаются вдоль оси, оставаясь параллельными друг другу.

Допустим, брус состоит из бесконечно большого числа продольных волокон. Из гипотезы Бернулли следует, что все волокна деформируются одинаково. Поскольку, согласно закону Гука, равным деформациям соответствуют равные напряжения, то при растяжении (сжатии) бруса нормальные напряжения равномерно распределяются по поперечному сечению, т.е.Растяжение и сжатие продольные силы и нормальные напряжения;.

Как известно,Растяжение и сжатие продольные силы и нормальные напряжения. Так какРастяжение и сжатие продольные силы и нормальные напряжения, то Растяжение и сжатие продольные силы и нормальные напряжения. Отсюда

Растяжение и сжатие продольные силы и нормальные напряжения (2.12)

Положительными считаются направления Растяжение и сжатие продольные силы и нормальные напряжения, соответствующие растяжению.

В сечениях бруса, примыкающих к месту приложения внешних сил и к закреплениям, распределение напряжений зависит

Растяжение и сжатие продольные силы и нормальные напряжения

Рис. 2.7

от способа приложения нагрузки и может быть неравномерным. Поэтому гипотеза плоских сечений в этих местах неверна.

Рассмотрим однородное напряженное состояние бруса, когда напряжения не изменяются по длине (рис. 2.7).

Изменение линейных размеров Растяжение и сжатие продольные силы и нормальные напряжения называется абсолютным удлинением; отношение Растяжение и сжатие продольные силы и нормальные напряженияотносительным удлинением или линейной деформацией.

В случае неоднородного напряженного состояния линейная деформация определяется выражением Растяжение и сжатие продольные силы и нормальные напряжения, где Растяжение и сжатие продольные силы и нормальные напряжения – приращение отрезка Растяжение и сжатие продольные силы и нормальные напряжения.

Между линейными деформациями Растяжение и сжатие продольные силы и нормальные напряжения и вызывающими их напряжениями Растяжение и сжатие продольные силы и нормальные напряжения существует связь, обусловленная упругими свойствами материала. Эта связь определяется законом Гука:

Растяжение и сжатие продольные силы и нормальные напряжения (2.13)

где Е – модуль упругости материала.

Рассмотрим выражениеРастяжение и сжатие продольные силы и нормальные напряжения. Согласно формуле (2.13) получимРастяжение и сжатие продольные силы и нормальные напряжения; посколькуРастяжение и сжатие продольные силы и нормальные напряжения

Отсюда изменение длины всего бруса

Растяжение и сжатие продольные силы и нормальные напряжения (2.14)

Произведение НА называется жесткостью бруса при растяжении (сжатии).

Если законы изменения N и А различны для отдельных участков бруса, то

Растяжение и сжатие продольные силы и нормальные напряжения (2.15)

где Растяжение и сжатие продольные силы и нормальные напряжения – число участков.

В частном случае, когда N и А постоянны по длине бруса, получаем формулу Гука в виде

Растяжение и сжатие продольные силы и нормальные напряжения (2.16)

Итак, перемещение i-го сечения с координатой х относительно неподвижного сечения

Растяжение и сжатие продольные силы и нормальные напряжения (2.17)

Аналогично можно записать

Растяжение и сжатие продольные силы и нормальные напряжения (2.18)

где Растяжение и сжатие продольные силы и нормальные напряжения – перемещение начального сечения относительно заделки.

Пусть сечение бруса (см. рис. 2.7) имеет форму прямоугольника со сторонами а и b, тогда при растяжении бруса периметр его уменьшится. Величина Растяжение и сжатие продольные силы и нормальные напряжения характеризует относительное изменение периметра поперечного сечения и называется поперечной деформацией. Если сечение круглое, то Растяжение и сжатие продольные силы и нормальные напряжения. Отношение поперечной деформации к линейной величине постоянно для данного материала и называется коэффициентом Пуассона:

Растяжение и сжатие продольные силы и нормальные напряжения (2.19)

Для стали и большинства металлических материалов Растяжение и сжатие продольные силы и нормальные напряженияРастяжение и сжатие продольные силы и нормальные напряжения. В общем случае Растяжение и сжатие продольные силы и нормальные напряжения.

Источник

Растяжением или сжатием называется такой вид деформаций, при котором в любом поперечном сечений бруса возникают только продольная сила . Брусья с примолинейной осью называют стержнями (рис.1).

Рис. 35.

Примой брус постоянного поперечного сечения , длиной , жестко защемленный одним концом и нагруженный на другом конце растягивающей силой F (рис.35). Под действием этой силы, брус удлинится на некоторою величину которую назовем абсолютным удлинением. Отношение абсолютного удлинения к первоначальной длине назовем относительным удлинением и обозначим .

При расчете, мы будем считать, что растяжение и сжатие бруса связано только с приложенными внешними силами, то есть учитываем только напряжения, действующие на стержень, температуру и время действий сил не будем учитывать.

Читайте также:  Как долго болит спина при растяжении мышц

При растяжении и сжатии продольные силы определяется методом сечении. Правило знаков будем определять следующим образом: растягивающие, то есть, направленные от сечения, продольные силы будем считать положительными, сжимающие, то есть направленные к сечению, будем считать отрицательными.

Для наглядного изображения распределения вдоль оси бруса продольных сил и нормальных напряжений строят графики, называемые эпюрами, причем для нормальных напряжений применяется то же правило знаков, что и для продольных сил.

При растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению и вычисляемые по формуле:

площать поперечного сечения бруса,

Очевидно, что при растяжении и сжатии форма сечения на напряжения не влияет.

Условие прочности бруса при растяжении и сжатии определяется следующим образом:

Здесь называют допускаемым напряжением, максимальная продольная сила.

Напряжения и деформаций при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Гоберта Гука. Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению бруса.

Математически закон Гука можно вписать в виде равенства:

Коэффициент пропорциональности Е характеризует жесткость материала и называется модулем продольной упругости. Модуль упругости и напряжения выражаются в одинаковых единицах.

Если в формулу закона Гука поставим выражения и то получим:

Контрольные вопросы

1. Что такое растяжение-сжатие?

____

2. По какому методу определяется нормальные силы?

__

3. По какой формуле определяется относительное удлинение или укорочение?

____

4. Какое напряжение появляется при растяжении-сжатии, и по какой формуле определяется?

____

5. Как пишется условие прочности при растяжении-сжатии?

____

6. Что такое модуль упругости, и в чем измеряется?

____

7. От чего зависит модуль упругости?

__

8. По какой формуле определяется абсолютное удлинение или укорочение бруса при растяжении-сжатии?

____

Пример 4.1.

Для данного ступенчатого бруса (рис.36.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .

Рис.36.

1. Разбиваем брус на участки как показоно на рис. 37а.

Рис.37.

2. По методу сечения определяем ординаты эпюр и каждого сечения.

4. Строим эпюру (рис. 37б.)

5. Определяем перемещение свободного конца бруса.

Пример 4.2.

Для данного ступенчатого бруса (рис.38.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .

Рис. 38.

1. Разбиваем брус на участки как показоно на рис. 39а.

2. По методу сечения определяем ординаты эпюр и каждого сечения.

Рис. 39.

3. Строим эпюру (рис. 37б.)

4. Определяем перемещение свободного конца бруса.

Для решения первой задачи контрольной работы 2 следует выполнить следующие действия:

1) Изучить темы 7,8,9.

2) Ответить на контрольные вопросы по темам 7,8,9.

2) Выполнить самостоятельно пример 2.2.

Данные для своего варианта первой задачи контрольной работы 2 посмотрите в таблице 4. Расчетную схему надо посмотреть в рис.40.

Таблица 4 (для первой задачи контрольной работы 2)

Номер варианта Номер схемы на рис. 40.
кН
I 3,6 1,4
II 2,4 1,1
III 3,5 2,5
IV 2,9 1,4
V 1,9 1,1
VI 3,7 2,3
VII 4,4 2,6
VIII 4,6 3,1
IX 4,2 3,2
X 3,1 1,5
I 3,6 2,4
III 3,5 2,5
V 2,8 1,2
VII 3,0 2,2
II 2,8 1,4
IV 2,4 1,2
VI 3,6 2,6
IX 2,1 1,0
VIII 2,6 1,3
X 3,8 1,6
V 1,4 3,2 1,8
III 3,4 1,5
VII 2,3 2,9 1,9
VIII 3,6 1,7
II 2,9 1,6
I 3,4 2,1
III 3,5 2,4
V 3,6 2,3
VII 3,2 2,2
II 3,6 2,6

Рис. 40.

Источник