Растяжение и сжатие бруса построение эпюр

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

209

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая. 

Сопротивление рассчитывается по формуле:

200

где:

  • Fl – действующие на участке l силы (Н);

  • ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

201

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

202

Рис. 1. Эпюра продольных сил

Рассмотрим случай:

F1 = 5 (кН);

F2 = 3 (кН);

F3 = 6 (кН).

Вычислим:

203

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

204

Рис. 2

Дано:

205

Решение.

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

206

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

207

По полученным данным строим эпюру (рис. 3).

208

Рис. 3

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Источник

Сопротивление материалов

Растяжение и сжатие



Напряжения и характер деформаций при растяжении и сжатии

Растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только продольная сила.
Брусья с прямолинейной осью, работающие на растяжение или сжатие, часто называются стержнями.

Рассмотрим невесомый, защемленный левым концом прямой брус, вдоль оси которого действуют активные силы F и 2F (рис. 1).
Части бруса постоянного сечения, заключенные между поперечными плоскостями (сечениями), в которых приложены одинаковые внешние силы (нагрузки или реакции связей) будем называть участками. Т. е. участок — это однородный кусок бруса и по форме, и по нагрузкам, и по площади сечения.

напряжения при сжатии и растяжении

Изображенный на рис. 1 брус состоит из двух участков – от защемленного конца до места приложения силы F, и от силы F до свободного конца, к которому приложена сила 2F.
Применим метод сечений и определим продольные внутренние силы N1 и N2 на этих участках.
Сначала рассечем брус плоскостью 1-1 и мысленно отбросим правую часть бруса, заменив ее эквивалентными внутренними и внешними силами.
Применим уравнения равновесия для этой части бруса:

∑ Z = 0, следовательно: 2F – F – N1 = 0, откуда N1 = 2F – F = F.

Очевидно, что для сохранения равновесия части бруса достаточно приложить продольную силу. Нетрудно понять, что на втором участке бруса продольная сила в сечении 2-2 будет иметь другое значение: N2 = 2F.
Таким образом, продольная сила в поперечном сечении бруса равна алгебраической сумме внешних сил, расположенных по одну сторону от рассматриваемого сечения и в пределах каждого участка имеет одинаковое значение.
Последнее утверждение не совсем справедливо, поскольку в местах приложения внешних сил внутренние силы распределяются по сложным закономерностям, но с учетом рассмотренного ранее принципа смягчения граничных условий (принципа Сен-Венана), мы допускаем некоторую условную погрешность, незначительно влияющую на итоговый результат расчета.



При определении величины продольной силы алгебраическим сложением внешних сил следует обращать внимание на знаки (векторные значения) этих сил. При расчетах в сопромате обычно принимают растягивающие нагрузки (направленные от сечения) положительными, а сжимающие – отрицательными.

При изучении ряда деформаций мы будем мысленно представлять брусья состоящими из бесконечного количества волокон, расположенных параллельно оси бруса, и предполагать, что при деформации растяжения и сжатия эти волокна не надавливают друг на друга (гипотеза о не надавливании волокон).

Чтобы понять характер напряжений и деформаций, возникающих в сжимаемом или растягиваемом брусе, представим себе прямой брус из резины, на котором нанесена сетка из продольных и поперечных линий. Если такой брус подвергнуть деформации растяжения, можно заметить, что:

  • поперечные линии на брусе остаются ровными и перпендикулярными оси бруса, а расстояния между ними увеличатся;
  • продольные линии останутся прямыми, а расстояния между ними уменьшатся.

Из этого эксперимента следует, что при растяжении справедлива гипотеза плоских сечений (гипотеза Бернулли), и, следовательно, все волокна бруса удлинятся на одну и ту же величину. Все это позволяет сделать вывод, что при растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению. Эти напряжения можно определить по формуле:

σ = N / А,

где N – продольная сила, А – площадь поперечного сечения бруса.

Очевидно, что при растяжении и сжатии форма сечения бруса на величину напряжений не влияет.
Для наглядного изображения распределения продольных сил и нормальных напряжений вдоль оси бруса строят графики, называемые эпюрами (от французского «epure» — чертеж, график) , при этом на эпюрах при построении учитывают знаки (векторные значения) продольных сил и напряжений.

построение эпюр сил и напряжений в брусе

Для ступенчатого бруса, к которому приложены сжимающая 2F и растягивающая 3F силы на рис. 2 показаны соответствующие эпюры продольных сил N и нормальных напряжений σ.

Порядок построения эпюр таков: сначала под чертежом бруса проводят прямую линию, параллельную оси бруса (эта линия условно представляет брус), затем напротив каждого сечения бруса откладывают по этой линии величину силовых факторов: для положительных – вверх, для отрицательных — вниз. Масштаб при этом выбирается произвольный. Разумеется, перед построением эпюры необходимо подсчитать величину силовых факторов (сил, моментов сил или напряжений) в каждом участке бруса.
На полученном графике в кружках указываются знаки силовых факторов по участкам, на наружных углах ступенчатых переходов ставятся числовые значения этих силовых факторов, а вся площадь графика заштриховывается тонкими линиями, перпендикулярными оси.
Слева от оси эпюры указывается, какой силовой фактор на ней представлен.

Читайте также:  Заговор молитвы от растяжение

По эпюрам, представленным на рис. 2 можно заметить, что в местах приложения внешних нагрузок и реакций внутренние силовые факторы изменяются скачкообразно (принцип Сен-Венана).
Визуальное исследование эпюры позволяет определить критические участки бруса, находящиеся в наиболее напряженном состоянии. Так, по представленным на рис. 2 эпюрам напряжений, возникающих в брусе, можно определить, что критическим является 2-й участок, поскольку здесь возникает наибольшее напряжение (по эпюре видно, что это напряжение сжатия, т. к. оно имеет отрицательное значение).

Кроме того, эпюра любого силового фактора позволяет (без применения лишних расчетов) определить силу или момент, действующие на брус со стороны, например, заделки, поскольку после построения эпюры со стороны свободного конца бруса эти силовые факторы отобразятся графически, без вычислений.

Ниже размещен видеоролик, в котором подробно объясняется порядок построения эпюр продольных сил и напряжений, возникающих в брусе при растяжении и сжатии, а также выводы, которые можно сделать на основе визуального анализа графиков.
Видеоурок ведет преподаватель ГОУ СПО «Нижнетагильский горно-металлургический колледж» Чирков А. С.

***

Материалы раздела «Растяжение и сжатие»:

  • Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
  • Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.
  • Закон Гука

Смятие



Правильные ответы на вопросы Теста № 4

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

1

1

2

1

3

2

2

1

3

1

Источник

1. На рисунке проводиться ось ОХ, совпадающая с продольной осью стержня.

2. Под рисунком стержня проводятся две базовые нулевые линии, параллельно продольной оси стержня. Одна для эпюры продольной силы Nz

Вторая базовая нулевая линия для эпюры нормальных напряжений (Мпа).

3. Стержень разбивается на участки. Для границ участков проводятся вертикальные линии в точках приложения нагрузки и изменения площади поперечного сечения вниз до пересечения с базовыми нулевыми линиями. Нумерация участков начинается со свободной стороны стержня для задачи статически определимой. Если задача статически неопределимая, то нумерация выполняется слева направо.

4. Для определения значения продольной силы используется метод сечений. В середине участка проводится сечение. Указывается направление продольной силы. Положительным считается направление продольной силы, направленной от сечения (растягивает). Значение продольной силы Nz определяется из условия равновесия отсечённой части (сумма проекций на ось ох всех действующих сил равна нулю 0).

5. Вычисляем значение нормальных напряжений.

6. Положительные значения продольной силы и нормального напряжения откладываем вверх от базовой нулевой линии, отрицательные вниз.

7. Проверяем правильность решения задачи по эпюре продольной силы. В точках, где приложена сосредоточенная сила, на эпюре должен быть скачок равный значению продольной силы.

8. Условие прочности проверяем по эпюре нормальных напряжений. Максимальные напряжения, возникающие в конструкции, не должны превышать допускаемых.

Пример №1: Построить эпюры продольной силы N и нормального напряжения σ, проверить на прочность стальной стержень, закрепленный с одной стороны (статически определимая задача). Р1 = 10кН Р2 = 15кН

Р3 =15кН

=100 Мпа; А1 = F; А2 = 2F; F = 100 мм2

Решение:

Параллельно продольной оси стержня проводим две базовые нулевые линии для продольной силы и нормального напряжения.

Разбиваем стержень на участки, начиная со свободной стороны. Проводим вниз вертикальные линии в точках приложения сил и изменения площади поперечного сечения до пересечения с нулевыми линиями. Нумерация участков начинается со свободной стороны стержня.

1 участок:

— на первом участке проводим сечение, перпендикулярное продольной оси, мысленно отбрасываем большую часть и рассматриваем меньшую часть стержня. Заменяем действие отброшенной части на оставленную продольной силой N1. Положительным считается действие от сечения (растягивает).

Рассматриваем равновесие оставленной части, проецируя действующие силы на ось ОХ:

Определяем продольную силу на первом участке:

-N1+ Р1=0 следовательно N1 = Р1=10 кН

Определяем нормальное напряжение на первом участке

2 участок:

-N2+ Р1 — Р2=0 следовательно N2 = Р1-Р2 =10-15= -5 кН

3 участок:

-N3+ Р1 — Р2=0 следовательно N3 = Р1-Р2 =10-15= -5 кН

4 участок:

-N4+ Р1 — Р2+Р3=0 следовательно N4 = Р1-Р2+Р3=10-15+15= 10 кН

Рис. 10.

Метод сечений для определения продольной силы.

Для построения эпюр продольной силы и нормального напряжения задаёмся произвольным масштабом (например: одна клеточка -5 кН и -25 мегапаскалей). Строим эпюры продольной силы и нормального напряжения, откладывая положительные значения вверх от базовой нулевой линии, отрицательные вниз.

Проверяем правильность решения задачи по эпюре продольной силы, в точке приложения сосредоточенной силы на эпюре должен быть скачок, равный действующей силе.

По эпюре нормального напряжения проверяем условие прочности максимальные напряжения должны быть меньше или равны допустимым, значит прочность обеспечена.

Рис.11.

Эпюры продольной силы N и нормального напряжения σ.

СПИСОК ЛИТЕРАТУРЫ

1. Рубашкин А.Г. Лабораторные работы по сопротивлению материалов.- М.: Высшая школа, 1961.-159с.

2. Афанасьев A.M., Марьин В.А. Лабораторный практикум по сопротивлению материалов.- М.: Наука, 1975.-284с.

3. Феодосьев В.И. Сопротивление материалов.- М.: Наука, 1979.-559с.

4. Писаренко Г.С. Сопротивление материалов.- Киев.: Высшая школа, 1973.-667с.

Источник

Геометрических характеристик плоских сечений

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Методические указания

к выполнению контрольной работы 1

по курсу «Сопротивление материалов» для студентов

специальностей 151001.65, 240801.65, 260601.65

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

ОБЩИЕ ПОЛОЖЕНИЯ

В элементах конструкций при действии внешних сил возникают внутренние силы упругости. При осевом растяжении (сжатии) стержня в его сечениях возникают только продольные силы N. Для их вычисления применяется метод сечений. Растягивающие продольные силы принято считать положительными, а сжимающие – отрицательными. Мерой внутренних сил является напряжение, оно характеризует интенсивность внутренних сил в точках сечения. При осевом растяжении (сжатии) стержня в его поперечных сечениях действуют только нормальные напряжения s. Знак s определяется знаком N. При растяжении стержня его длина увеличивается, а поперечные размеры уменьшаются. При сжатии – наоборот. В результате изменения длины стержня его сечения совершают линейные перемещения d вдоль продольной оси Z.

В задаче 1 проводится вычисление продольных усилий, нормальных напряжений в поперечных сечениях стержня, определение перемещений сечений стержня, а также построение соответствующих эпюр. Так как основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации, то также определяется коэффициент запаса прочности.

Стержни и стержневые системы, в которых внутренние усилия могут быть определены при помощи уравнений равновесия статики, называются статически определимыми. Стержни и системы, внутренние усилия в которых нельзя определить при помощи одних лишь уравнений статики, называются статически неопределимыми. Для их расчета необходимо рассмотреть систему в деформированном состоянии и составить дополнительные уравнения, связывающие перемещения элементов системы, Раскрытие статической неопределимости системы показано в задаче 2.

При центральном растяжении-сжатии и при чистом сдвиге прочность и жесткость стержня зависит от простейшей геометрической характеристики – площади поперечного сечения А. При других видах деформации, например, кручение и изгиб, прочность и жесткость стержня определяются не только площадью поперечного сечения стержня, но и формой сечения. Поэтому для расчета на прочность и жесткость в этих случаях приходится использовать более сложные геометрические характеристики сечений: статические моменты – Sx и Sy; моменты инерции: осевые Jx и Jy, центробежный Jxy, полярный Jp; моменты сопротивления: осевые Wx и Wy, полярный Wp. В задаче 3 определяются геометрические характеристики плоского сечения стержня, состоящего из двух прокатных профилей.

РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕСЖАТИЕ

Для ступенчатого стального бруса (рис. 1, а), выполненного из стали марки Ст. 3, имеющей предел текучести sТ = 240 МПа, модуль Юнга
E = 2×105 MПа, требуется:

Читайте также:  Одноосное растяжение что это

1. Построить по длине бруса эпюры продольных сил N, нормальных напряжений s и перемещений поперечных сечений d.

2. Вычислить коэффициент запаса прочности бруса n.

Проведем ось z, совпадающую с осью бруса. Направление оси выбираем произвольно. Брус жестко защемлен верхним концом в опоре, в которой возникает опорная реакция R. Направление вектора реакции выбираем произвольно. Величину опорной реакции найдем из уравнения равновесия статики:

∑ FZ = 0; R – F1 + F2 = 0; R = F1 — F2 == 24 кН.

Разделим брус на силовые участки. Границами участков являются поперечные сечения бруса, проходящие через точки приложения внешних нагрузок и сечения, в которых изменяется площадь поперечного сечения бруса. Точки пересечения оси бруса и граничных сечений обозначим буквами B, C, D, K. Получим 3 участка бруса.

Используем метод сечений. На каждом участке проводим сечения I-I,
II-II, III-III. При этом одну из частей бруса (более сложную) мысленно отбрасываем и к плоскости сечения оставшейся части бруса прикладываем вектор продольной силы N в направлении внешней нормали к сечению. Рассматриваем равновесие оставшейся части бруса (рис. 2).

Уравнения равновесия статики на каждом участке запишутся:

на первом участке BC (рис. 2, а) ∑ FZ = 0; R – N1 = 0; N1 = R = 24 кН;

на втором участке CD (рис. 2, б) ∑ FZ = 0; R – N2 = 0; N2 = R = 24 кН;

на третьем участке DK (рис. 2, в) ∑ FZ = 0; N3 + F2 = 0; N3 = — F2 = — 42 кН.

Проведем вертикальную линию (рис. 1, б), параллельную оси y и отложим от нее в выбранном масштабе на каждом участке вдоль этой линии положительные значения продольной силы вправо, а отрицательные влево. Получим эпюру продольных сил N (рис. 1, б).

Определим нормальные напряжения σ, МПа, на каждом участке бруса по формуле

где N, Н – продольная сила на данном участке; А, м2 – площадь поперечного сечения данного участка.

На первом участке BC

На втором участке CD

На третьем участке DK

Проведем вертикальную линию (рис. 1, в), параллельную оси y и отложим в выбранном масштабе на каждом участке вдоль этой линии положительные значения нормальных напряжений вправо, а отрицательные влево. Получим эпюру нормальных напряжений σ.

Найдем удлинения ∆ℓ, м, участков бруса по формуле

,

где N, Н – продольная сила на данном участке; ℓ, м — длина данного участка; Е, МПа – модуль Юнга материала бруса на данном участке; А, см2 – площадь поперечного сечения данного участка.

На первом участке ВС

.

На втором участке CD

.

На третьем участке DK

.

Определим перемещения сечений бруса, проходящих через границы участков. Перемещение сечения, проходящего через точку В равно нулю, так как в жесткой заделке нет перемещений, т. е. δВ = 0.

Между точками B и C находится первый участок. Перемещение сечения C будет равно δC = δВ + ∆ℓ1 = 0 + 0,72 · 10-4 = 0,72 · 10-4 м.

Между точками C и D находится второй участок. Перемещение сечения D будет равно δD = δC + ∆ℓ2 = 0,72 · 10-4 + 0,8 · 10-4 = 1,52 · 10-4 м.

Между точками D и K находится третий участок. Перемещение сечения D будет равно δK = δD + ∆ℓ3 = 1,52 · 1,8 · 10-4 = -1,28 · 10-4 м.

Отложим в выбранном масштабе на граничных сечениях положительные значения перемещений сечений вправо, а отрицательные влево. Получим эпюру перемещений сечений бруса δ (рис. 1, г).

Найдем коэффициент запаса прочности бруса по формуле

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ

СТЕРЖНЕВОЙ СИСТЕМЫ

Абсолютно жесткий брус (рис. 3) закреплен с помощью шарнирно-неподвижной опоры и двух стержней и нагружен силой Q. Требуется:

1. найти усилия и напряжения в стержнях, выразив их через силу Q;

2. из расчета по допускаемым напряжениям найти допускаемую нагрузку [Q], приравняв большее из напряжений в двух стержнях допускаемому напряжению [σ] = 160 МПа;

3. из расчета по допускаемым нагрузкам найти предельную грузоподъемность системы и допускаемую нагрузку QДОП, если предел текучести σТ = 240 МПа и запас прочности n = 1,5;

4. сравнить величины [Q] и QДОП, полученные при расчете по допускаемым напряжениям и допускаемым нагрузкам.

 

 

Рис. 4 Рис. 5

(1)

Составлять уравнения и не имеет смысла, так как в них войдут не интересующие нас реакции опоры О (R3, R4). Таким образом, мы убеждаемся еще раз, что задача статически неопределима (в единственное уравнение статики (1) входят две неизвестные силы N1 и N2; нагрузку Q в этом уравнении считаем заданной).

Для составления дополнительного уравнения рассмотрим деформацию системы. Под действием нагрузки Q абсолютно жесткий брус CD, оставаясь прямым, повернется вокруг шарнира О и займет положение C1D1 (рис.6). Точка В опишет дугу, которую вследствие малости угла С1ОС заменим хордой ВВ1. Величина ВВ1 представляет собой удлинение второго стержня = ВВ1. Так как упругие деформации малы по сравнению с длинами стержней, то считают, что угол между абсолютно жестким брусом CD и ВК не изменился, то есть . Из рис. 3 следует, что a = 45°. При этом стержни 1 и 2 удлиняются соответственно на величины и .

 

Рис. 6

Удлинение стержня 1 () получаем на чертеже, опустив перпендикуляр ВМ из точки В на КВ1 (положение стержня 1 после деформации).

Из прямоугольного треугольника ВВ1М (рис.6) следует, что

(2)

На основании закона Гука (отрезок МВ1) и (отрезок ВВ1). При составлении этих выражений следует соблюдать соответствие направления нормальных сил N1 и N2 деформациям стержней 1 и 2. В данном случае стержни 1 и 2 растягиваются и силы N1 и N2 – растягивающие.

Условие совместности деформаций (2) перепишется так

(3)

Из рис. 3 видно, что — длина стержня 1; ℓ 2 = в – длина стержня 2. Тогда выражение (3) получает вид

(4)

Так как a = 45°, то получаем: N1 = N2. Решая совместно уравнения (1) и (4), получаем

N1 = N2 = 0,488 · Q.

После определения усилий N1 и N2 находим величины нормальных напряжений s1 и s2 в стержнях 1 и 2:

Определим допускаемую силу [Q]. из расчета по допускаемым напряжениям. Так как s2 > s1, то состояние второго стержня более опасно. Поэтому для определения допускаемой силы [Q]. следует приравнять напряжение во втором стержне s2 допускаемому напряжению [s] = 160 МПа.

(кН/м2)

244 [Q]. = 160 · 103 ; [Q]. = кН.

Допускаемая нагрузка [Q]. = 655,74 кН.

Определим допускаемую силу QДОП. из расчета по допускаемым нагрузкам. Напряжение во втором стержне оказалось больше, чем в первом, то есть s2 > s1. При увеличении силы Q напряжение во втором стержне достигнет предела текучести раньше, чем в первом. Когда это произойдет, напряжение во втором стержне не будет некоторое время увеличиваться, система станет как бы статически определимой, нагруженной силой Q и усилием во втором стержне

Узнай стоимость своей работы

Бесплатная оценка заказа!

.

При дальнейшем увеличении силы напряжение в первом стержне также достигнет предела текучести. Усилие в этом стержне будет равно

Запишем уравнение равновесия статики для такого состояния системы

где sТ = 240 МПа – предел текучести материала.

Из этого уравнения находим предельную грузоподъемность системы

кН.

Допускаемая нагрузка QДОП определится так

кН,

где n = 1,5 – коэффициент запаса прочности.

Сравнивая полученные результаты, видим, что допускаемая нагрузка QДОП, определенная из расчета по допускаемым нагрузкам, больше допускаемой нагрузки [Q], из расчета по допускаемым напряжениям в

раза.

Способ расчета по допускаемым нагрузкам для статически неопределимых систем позволяет вскрыть дополнительные резервы прочности, повысить несущую способность системы и указывает на возможность более экономного расходования материала.

Читайте также:  Растяжение связок у грудного ребенка

Рассмотрим пример на определение геометрических характеристик плоского сечения. Сечение (рис. 7) состоит из швеллера № 30 и равнополочного уголка 100х100х10. Требуется:

1. Определить положение центра тяжести поперечного сечения.

2. Найти осевые и центробежный моменты инерции относительно случайных осей (XC и YC), проходящих через центр тяжести.

3. Определить положение главных централь­ных осей u и v.

4. Найти моменты инерции относительно главных центральных осей.

5. Вычертить сечение в масштабе 1 : 2 и указать на нем все размеры в числах и все оси.

Выпишем из таблиц сортамента все данные, необходимые для расчёта, и схематично зарисуем профили элементов сечения (рис. 8).

Швеллер № 30 по ГОСТ 8240-89. Площадь А = 40,50 см2. Моменты инерции относительно собственных центральных осей: Jх = 5810,0 см4,
Jу = 387,0 см4, Jху=0. Так как одна из осей является осью симметрии, то оси будут главными и центробежный момент относительно них равен нулю. Центр тяжести расположен на расстоянии z0 = 2,52 см от стенки швеллера.

Уголок равнополочный 100х100х10 по ГОСТ 8509-86. Площадь
А = 19,24 см2. Моменты инерции Jх = Jу = 178,95 см4, см4, см4. Расстояние от центра тяжести уголка до наружных граней полок z0 = 2,83 см. Угол между осями Х и Х0 равен 45º. Для дальнейшего расчёта понадобится величина центробежного момента инерции уголка Jху. Её можно вычислить по формуле

Так как для равнополочного уголка 45º, то sin 2 = sin 90º = 1.

Знак центробежного момента инерции уголка выбирается в соответствии с рис. 9. При положениях уголка (рис.9, а) и (рис.9, б) центробежный момент инерции отрицательный, а при положениях уголка (рис.9, в) и (рис.9, г) центробежный момент инерции положительный.

Прежде чем приступить к дальнейшему расчёту, необходимо с соблюдением масштаба (в задании задачи – это масштаб 1:2) начертить сечение,
(рис.Так как сечение состоит из 2 элементов, пронумерованных цифрами I, II, необходимо ввести соответствующие индексы в обозначении центров тяжестей (01, 02), центральных осей x1, y1, x2, y2 и соответствующих моментов инерции. Из рис. 10 видно, что центральные оси швеллера x1 и y1 соответствуют осям y и x швеллера на рис. 8. Соответственно поменяются местами осевые моменты инерции швеллера.

Определим координаты центра тяжести сечения относительно вспомогательных осей x и y (рис. 10). Оси удобно провести так, чтобы все сечение располагалось в первом квадрате. Найдём координаты центров тяжести элементов в системе осей x и y. Из рис. 10 видно, что О1(15;2,52), О2(22,17;3,48). Координаты центра тяжести сечения находятся по формулам:

;

.

В масштабе наносим точку С с координатами Хс=17,31 и Ус=2,82 см на расчётную схему и проводим через т. С оси xс и yс, параллельные осям x и y. Находим координаты центров тяжестей О1 и О2 элементов в полученной системе координат xсСyс.

Пользуясь формулами связи между координатами точки относительно параллельных осей координат, получим:

см;

см;

см;

см.

Для проверки правильности нахождения координат центра тяжести сечения найдём статистические моменты всего сечения относительно центральных осей xс и yс. Известно, что статические моменты сечения относительно центральных осей должны быть равны нулю:

см3;

см3.

Близкие к нулю значения Sx и Sy показывают, что координаты центра тяжести сечения найдены правильно. Отличие их от нуля – накопленная погрешность вычисления.

Определим осевые и центробежный моменты инерции сечения относительно произвольных центральных осей xсyс. Используем формулы зависимостей между моментами инерции относительно параллельных осей:

;

;.

Определим направление главных центральных осей u и v. Тангенс угла наклона главных центральных осей u и v к произвольным центральным осям xс и yс определяется по формуле

.

По найденному значению тангенса с помощью таблиц или калькулятора находим значение угла , откуда . Положительный угол откладывается от оси xс против хода часовой стрелки и определяет положение одной из главных центральных осей – u. Вторая главная центральная ось – v перпендикулярна оси u.

Покажем на расчётной схеме (рис. 10) положение главных центральных осей u и v.

Для проверки правильности определения положения главных центральных осей найдём центробежный момент инерции относительно этих осей u и v по формуле:

.

Центробежный момент инерции относительно главных осей должен быть равным нулю. Полученная близкая к нулю величина JUV показывает, что положение главных осей определено достаточно точно.

Определим моменты инерции относительно главных осей. Величины главных моментов инерции находятся по формуле:

;

Jmax = 6660,90 см4; Jmin = 511,86 см4.

Максимальный момент инерции Jmax будет относительно той главной центральной оси, которая ближе расположена к произвольной центральной оси, момент инерции относительно которой имеет наибольшее значение, то есть в нашем случае это есть ось v – она ближе всего к оси yс с максимальным . Таким образом, получаем:

Jv = Jmax = 6660,90 см4; Ju = Jmin = 511,86 см4.

Для контроля определения Jv и Ju проверим, выполняется ли равенство:

Jv + Ju; 318,01 + 6654,74 = 7172,75 см4 ;

Jv + Ju = 511,86 + 6660,90 = 7172,76 см4.

С той же целью найдём центробежный момент инерции по известным главным центральным моментам инерции Jv и Ju и углу по формуле

.

Незначительное отличие от ранее найденного значения =194,47 см4 свидетельствует о достаточной точности определения положения главных центральных осей и величин главных центральных моментов инерции.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Какие случаи деформации бруса называются центральным растяжением или сжатием?

2. Как вычисляется значение продольной силы в произвольном поперечном сечении бруса?

3. Как вычисляются напряжения при центральным растяжении или
сжатии?

4. Как формулируется закон Гука? Что называется жесткостью сечения при растяжении (сжатии)?

5. Что называется модулем Юнга Е? Какова его размерность?

6. Что называется допускаемым напряжением? Как оно выбирается для пластичных и хрупких материалов?

7. Какие конструкции являются статически определимыми, а какие – статически неопределимыми?

8. Каким образом проводится расчет статически неопределимых конструкций?

9. Чем отличается расчет по допускаемым напряжениям от расчета по допускаемым нагрузкам?

10. Как находятся координаты центра тяжести сечения?

11. Какие оси называются главными?

12. Для каких сечений можно без вычислений установить положение главных осей?

13. Чему равен центробежный момент инерции относительно главных осей?

14. Какие оси называются центральными?

15. Относительно каких центральных осей осевые моменты инерции принимают наибольшее и наименьшее значения?

ЛИТЕРАТУРА

1. Александров материалов: учебник для вузов / , , ; под ред. . – 5-е изд., стер. – М.: Высш. шк., 2007. – 560 с.

2. Вольмир материалов / , ; под ред. . – М.: Высш. шк., 2007 . – 412 с.

3. Гильман материалов: учеб. пособие / . – Саратов: СГТУ, 2003. – 108 с.

4. Сопротивление материалов: учеб. пособие / , , и др.; под ред. . – 3-е изд., перераб. и доп. – М.: Высшая школа, 2007. – 488 с.

5. Феодосьев материалов: учебник / . – 13-е изд., стер. – М.: Изд-во МГТУ им. , 2005. – 592 с.

6. ГОСТ 8509-86. Сталь прокатная угловая равнополочная. Сортамент. – М.: Изд-во стандартов, 1987. – 6 с.

7. ГОСТ 8240-89. Сталь горячекатанная. Швеллеры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

8. ГОСТ 8239-89. Сталь горячекаменная. Двутавры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

Методические указания

к выполнению контрольной работы

Составили: ГИЛЬМАН Александр Абрамович

ПОПОВА Наталья Евгеньевна

Рецензент

Корректор

Подписано в печать Формат 60х84 1/16

Бум. офсет. Усл. печ. л. Уч.-изд. л

Тираж 100 экз. Зак?