Растяжение и сдвиг функции

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Растяжение и сдвиг функции

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Растяжение и сдвиг функции

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Растяжение и сдвиг функции

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Растяжение и сдвиг функции

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Растяжение и сдвиг функции

Растяжение и сдвиг функции

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Растяжение и сдвиг функции

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Растяжение и сдвиг функции

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Растяжение и сдвиг функции

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Растяжение и сдвиг функции

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Растяжение и сдвиг функции

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Растяжение и сдвиг функции

Продолжение — в статье «Построение графиков функций».

Источник

Основные элементарные функции в чистом виде без преобразования встречаются редко, поэтому чаще всего приходится работать  с элементарными функциями, которые получили  из основных  с помощью добавления констант и коэффициентов.  Такие графики строятся при помощи геометрических преобразований заданных элементарных функций.

Рассмотрим на примере квадратичной функции вида y=-13x+232+2, графиком которой является парабола y=x2, которая сжата втрое относительно Оу и симметрична относительно Ох, причем сдвинутую на 23 по Ох вправо, на 2 единицы по Оу вверх. На координатной прямой это выглядит так:

Геометрические преобразования графика функции

Применяя геометрические преобразования заданного графика получаем, что  график изображается функцией вида ±k1·f(±k2·(x+a))+b, когда k1>0, k2>0 являются коэффициентами сжатия при 0<k1<1, 0<k2<1 или растяжения при k1>1, k2>1 вдоль Оу и Ох. Знак перед коэффициентами k1 и k2 говорит о симметричном отображении графика относительно осей, a и b сдвигают ее по Ох и по Оу.

Определение 1

Читайте также:  Растяжение мышц шеи мкб

Существует 3 вида геометрических преобразований графика:

  • Масштабирование вдоль Ох и Оу. На это влияют коэффициенты k1 и k2 при условии не равности 1, когда 0<k1<1, 0<k2<1, то график сжимается по Оу, а растягивается по Ох, когда k1>1, k2>1, то график растягивается по Оу и сжимается по Ох.
  • Симметричное отображение относительно координатных осей. При наличии знака «-» перед k1 симметрия идет относительно Ох, перед k2 идет относительно Оу. Если «-» отсутствует, тогда пункт при решении пропускается;
  • Параллельный перенос (сдвиг) вдоль Ох и Оу. Преобразование производится  при  наличии коэффициентов a и b неравных 0. Если значение a положительное, до график сдвигается влево на |а|единиц, если отрицательное a, тогда в право на такое же расстояние. Значение b определяет движение по оси Оу, что значит при положительном b функция движется вверх, при отрицательном – вниз.

Степенная функция

Рассмотрим решения на примерах, начиная со степенной функции.

Пример 1

Преобразовать y=x23 и построить график функции y=-12·8x-423+3.

Решение

Представим функции таким образом:

y=-12·8x-423+3=-12·8x-1223+3=-2x-1223+3

Где k1=2, стоит обратить внимание на наличие «-», а=-12 , b=3. Отсюда получаем, что геометрические преобразования  производятся  с растяжения вдоль Оу вдвое, отображается симметрично относительно Ох, сдвигается вправо на 12 и вверх на 3 единицы.

Если изобразить исходную степенную функцию, получим, что

при растягивании вдвое вдоль Оу имеем, что

Отображение, симметричное относительно Ох, имеет вид

а движение вправо на 12

движение на 3 единицы вверх имеет вид

Показательная функция

Преобразования показательной функции рассмотрим на примерах. 

Пример 2

Произвести построение графика показательной функции y=-1212(2-x)+8.

Решение.

Преобразуем функцию, исходя из свойств степенной функции. Тогда получим, что

y=-1212(2-x)+8=-12-12x+1+8=-12·12-12x+8

Отсюда видно, что получим цепочку преобразований y=12x:

y=12x→y=12·12x→y=12·1212x→→y=-12·1212x→y=-12·12-12x→→y=-12·12-12x+8

Получаем, что исходная показательная функция имеет вид

Сжимание вдвое вдоль Оу дает

Растягивание вдоль Ох

Симметричное отображение относительно Ох

Отображение симметрично относительно Оу

Сдвигание на 8 единиц вверх

Логарифмическая функция

Рассмотрим решение на примере логарифмической функции y=ln(x).

Пример 3

Построить функцию y=lne2·-12×3 при помощи преобразования y=ln(x).

Решение

Для решения необходимо использовать свойства логарифма, тогда получаем:

y=lne2·-12×3=ln(e2)+ln-12×13=13ln-12x+2

Преобразования логарифмической функции выглядят так:

y=ln(x)→y=13ln(x)→y=13ln12x→→y=13ln-12x→y=13ln-12x+2

Изобразим график исходной логарифмической функции

Производим сжимание строе по Оу

Производим растягивание вдоль Ох

Производим отображение относительно Оу

Производим сдвигание вверх на 2 единицы, получаем

Для преобразования графиков тригонометрической функциинеобходимо подгонять под схему решения вида ±k1·f(±k2·(x+a))+b. Необходимо , чтобы k2 приравнивался к Tk2. Отсюда получаем, что 0<k2<1 дает понять, что график функции увеличивает период по Ох, при k1 уменьшает его. От коэффициента k1 зависит амплитуда колебаний синусоиды и косинусоиды.

Преобразования y = sin x

Рассмотрим примеры решения заданий с преобразованиями y=sinx.

Пример 4

Построить график y=-3sin12x-32-2 с помощью преобразований функции y=sinx.

Решение

Необходимо привести функцию к виду ±k1·f±k2·x+a+b. Для этого:

y=-3sin12x-32-2=-3sin12(x-3)-2

Видно, что k1=3, k2=12, a=-3, b=-2. Так как перед k1 имеется «-», а перед k2 — нет, тогда получим цепочку преобразований вида:

y=sin(x)→y=3sin(x)→y=3sin12x→y=-3sin12x→→y=-3sin12x-3→y=-3sin12(x-3)-2

Подробное преобразование синусоиды. При построении графика исходной синусоиды y=sin(x) получаем, что наименьшим положительным периодом считается T=2π. Нахождение максимума в точках π2+2π·k; 1, а минимума — -π2+2π·k; -1, k∈Z.

Производится растягивание по Оу втрое, значит возрастание амплитуды колебаний возрастет в 3 раза. T=2π — это наименьший положительный период. Максимумы переходят в π2+2π·k; 3, k∈Z , минимумы — -π2+2π·k; -3, k∈Z.

При растягивании по Ох вдвое получаем, что наименьший положительный период увеличивается в 2 раза и равняется T=2πk2=4π. Максимумы переходят в π+4π·k; 3, k∈Z, минимумы – в -π+4π·k; -3, k∈Z.

Изображение производится симметрично относительно Ох. Наименьший положительный период в данном случае не меняется и равняется T=2πk2=4π. Переход максимума выглядит как -π+4π·k; 3, k∈Z,  а минимума – π+4π·k; -3, k∈Z.

Производится сдвижение графика вниз на 2 единицы. Изменение наименьшего общего периода не происходит. Нахождение максимумов с перехождением в точки -π+3+4π·k; 1, k∈Z, минимумов — π+3+4π·k; -5, k∈Z.

На данном этапе график тригонометрической функции считается преобразованным.

Преобразование функции y = cos x

Рассмотрим подробное преобразование функции y=cosx.

Пример 5

Построить график функции y=32cos2-2x+1 при помощи преобразования функции вида y=cosx.

Решение

По алгоритму необходимо заданную функцию привести к виду ±k1·f±k2·x+a+b. Тогда получаем, что

y=32cos2-2x+1=32cos(-2(x-1))+1

Из условия видно, что k1=32, k2=2, a=-1, b=1, где k2 имеет «-», а перед k1 он отсутствует.

Отсюда получаем, что получится график тригонометрической функции вида:

y=cos(x)→y=32cos(x)→y=32cos(2x)→y=32cos(-2x)→→y=32cos(-2(x-1))→y=32cos-2(x-1)+1

Пошаговое преобразование  косинусоиды с графической иллюстрацией.

При заданной графике y=cos(x) видно, что наименьший общий период равняется T=2π. Нахождение максимумов в 2π·k; 1, k∈Z, а минимумов π+2π·k; -1, k∈Z.

При растягивании вдоль Оу в 32 раза происходит возрастание амплитуды колебаний в 32 раза.T=2π является наименьшим положительным периодом. Нахождение максимумов в 2π·k; 32, k∈Z, минимумов в π+2π·k; -32, k∈Z.

Читайте также:  Презентация на тему что такое растяжение и первая помощь

При сжатии вдоль Ох вдвое получаем, что наименьшим положительным периодом является число  T=2πk2=π. Производится переход  максимумов в π·k; 32, k∈Z,минимумов — π2+π·k; -32, k∈Z.

Симметричное отображение относительно Оу. Так как график нечетный, то он не будет изменяться.

При сдвигании графика на 1. Отсутствуют изменения наименьшего положительного периода T=π. Нахождение максимумов в π·k+1; 32, k∈Z, минимумов — π2+1+π·k; -32, k∈Z.

При сдвигании на 1 наименьший положительный период равняется T=π и не изменен. Нахождение максимумов в π·k+1; 52, k∈Z, минимумов в π2+1+π·k; -12, k∈Z.

Преобразования функции косинуса завершено.

Преобразования y = tgx

Рассмотрим преобразования на примере y=tgx.

Пример 6

Построить график функции y=-12tgπ3-23x+π3 при помощи преобразований функции y=tg(x).

Решение

Для начала необходимо привести заданную функцию к виду ±k1·f±k2·x+a+b, после чего получаем, что

y=-12tgπ3-23x+π3=-12tg-23x-π2+π3

Отчетливо видно, что k1=12, k2=23, a=-π2, b=π3, а перед коэффициентами k1 и k2 имеется «-». Значит, после преобразования тангенсоиды получаем

y=tg(x)→y=12tg(x)→y=12tg23x→y=-12tg23x→→y=-12tg-23x→y=-12tg-23x-π2→→y=-12tg-23x-π2+π3

Поэтапное преобразование тангенсоиды с графическим изображением.

 Имеем, что исходный график – это y=tg(x). Изменение положительного периода равняется T=π. Областью определения считается -π2+π·k; π2+π·k, k∈Z.

Сжимаем  в 2 раза вдоль Оу. T=π считается наименьшим положительным периодом, где область определения имеет вид -π2+π·k; π2+π·k, k∈Z.

Растягиваем вдоль Ох в 32 раза. Вычислим наименьший положительный период, причем равнялся T=πk2=32π. А область определения функции с координатами -3π4+32π·k; 3π4+32π·k, k∈Z , меняется только область определения.

Симметрия идет по сторону Ох. Период не изменится  в этот момент.

Необходимо симметрично отображать оси координат. Область определения в данном случае неизменна. График совпадает с предыдущим. Это говорит о том, что функция тангенса нечетная. Если к нечетной функции задать симметричное отображение Ох и Оу, тогда преобразуем до исходной функции.

При движении вправо на π2 видим, что наименьшим положительным периодом является  T=32π. А изменения происходят внутри области определения -π4+32π·k; 5π4+32π·k, k∈Z.

При сдвигании графика на π3 получаем, что изменение области определения отсутствует.

Преобразование тангенса завершено.

Тригонометрическая функция вида y=arccosx

Рассмотрим на примере тригонометрической функции вида y=arccosx.

Пример 7

Построить график функции y=2arcsin13(x-1) при помощи преобразования y=arccosx.

Решение

Для начала необходимо перейти от арккосинуса к арксинусу при помощи обратных тригонометрических функций arcsin x+arcocos x=π2. Значит, получим, что arcsinx=π2-arccosx.

Видно, что y=arccosx→y=-arccosx→y=-arccosx+π2.

Поэтапное преобразование арккосинуса и графическое изображение.

График, данный по условию

Производим отображение относительно Ох

Производим движение вверх на π2.

Таким образом, осуществляется переход от арккосинуса к косинусу. Необходимо произвести геометрические преобразования арксинуса и его графика.

Видно, что k1=2, k2=13, a=-1, b=0, где отсутствует знак «-» у  k1 и k2.

Отсюда получаем, что преобразования y=arcsinx примет вид:

y=arcsin(x)→y=2arcsin(x)→→y=2arcsin13x→y=2arcsin13(x-1)

Поэтапное преобразование графика арксинуса и графическое изображение.

График y=arcsinx имеет область определения  вида x∈-1; 1, тогда интервал y∈-π2; π2 относится к области значений.

Необходимо растянуть вдвое по Оу, причем область определения останется неизменной x∈-1; 1, а область значений y∈-π; π.

Растягивание по Ох строе. Происходит расширение области определения x∈-3; 3, но область значений остается неизменной y∈-π; π.

Производим сдвигание вправо на 1, причем область определения становится равной x∈-2; 4. Без изменений остается область значений y∈-π; π.

Задача преобразования графика обратной тригонометрической функции завершена. Если по условию имеются сложные функции, тогда необходимо прибегнуть к полному исследованию функция.

Источник

Если к АРГУМЕНТУ функции добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси . Рассмотрим функцию и положительное число :

Правила:
1) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц влево;
2) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вправо.

Пример 6

Построить график функции

Берём параболу и сдвигаем её вдоль оси абсцисс на 1 единицу вправо:

«Опознавательным маячком» служит значение , именно здесь находится вершина параболы .

Теперь, думаю, ни у кого не возникнет трудностей с построением графика (демонстрационный пример начала урока) – кубическую параболу нужно сдвинуть на 2 единицы влево.

Вот ещё один характерный случай:

Пример 7

Построить график функции

Гиперболу (чёрный цвет) сдвинем вдоль оси на 2 единицы влево:

Перемещение гиперболы «выдаёт» значение, которое не входит в область определения функции. В данном примере , и уравнение прямой задаёт вертикальную асимптоту (красный пунктир) графика функции (красная сплошная линия). Таким образом, при параллельном переносе асимптота графика тоже сдвигается (что очевидно).

Вернёмся к тригонометрическим функциям:

Пример 8

Построить график функции

График синуса (чёрный цвет) сдвинем вдоль оси вдоль оси на влево:

Внимательно присмотримся к полученному красному графику …. Это в точности график косинуса ! По сути, мы получили геометрическую иллюстрацию формулы приведения , и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции. График функции получается путём сдвига синусоиды вдоль оси на единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций). Аналогично можно убедиться в справедливости любой другой формулы приведения.

Читайте также:  После растяжения появился синяк

Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: , при этом параметр «ка» не равен нулю или единице, параметр «бэ» – не равеннулю. Как построить график такой функции? Из школьного курса мы знаем, что, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем/растягиваем/отображаем в зависимости от значения , а потом сдвигаем на единиц. Но здесь есть подводный камень, и корректный алгоритм таков:

Аргумент функции необходимо представить в виде и последовательно выполнить следующие преобразования:

1) График функции сжимаем (или растягиваем) к оси (от оси) ординат: (если , то график дополнительно следует отобразить симметрично относительно оси ).

2) График полученной функции сдвигаем влево (или вправо) вдоль оси абсцисс на (!!!) единиц, в результате чего будет построен искомый график .

Пример 9

Построить график функции

Представим функцию в виде и выполним следующие преобразования: синусоиду (чёрный цвет):

1) сожмём к оси в два раза: (синий цвет);
2) сдвинем вдоль оси на(!!!) влево: (красный цвет):

Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого. График сдвигается на , а вовсе не на .

Продолжаем расправляться с функциями начала урока:

Пример 10

Построить график функции

Представим функцию в виде . В данном случае: Построение проведём в три шага. График натурального логарифма :

1) сожмём к оси в 2 раза: ;
2) отобразим симметрично относительно оси : ;
3) сдвинем вдоль оси на(!!!) вправо: :

Для самоконтроля в итоговую функцию можно подставить пару значений «икс», например, и свериться с полученным графиком.

В рассмотренных параграфах события происходили «горизонтально» – гармонь играет, ноги пляшут влево/вправо. Но похожие преобразования происходят и в «вертикальном» направлении – вдоль оси . Принципиальное отличие состоит в том, что связаны они не с АРГУМЕНТОМ, а с САМОЙ ФУНКЦИЕЙ.

Растяжение (сжатие) графика ВДОЛЬ оси ординат.
Симметричное отображение графика относительно оси абсцисс

Структура второй части статьи будет очень похожа.

1) Если ФУНКЦИЯ умножается на число , то происходитрастяжение её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции растянуть вдоль оси в раз.

2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции сжать вдоль оси в раз.

Догадайтесь, какую функцию я буду снова пытать =)

Пример 11

Построить графики функций .

Берём синусоиду за макушку/пятки:

И вытягиваем её вдоль оси в 2 раза:

Период функции не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .

Теперь сожмём синусоиду вдоль оси в 2 раза:

Аналогично, период не изменился, но область значений функции «сплющилась» в два раза: .

Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций (Примеры №№1,3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи. Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач высшей математики!

И, конечно же, классический пример растяжения/сжатия параболы:

Пример 12

Построить графики функций .

Возьмём рога молодого оленя и вытянем их вверх вдоль оси в два раза: . Затем сожмём вдоль оси ординат в 2 раза:

И снова заметьте, что значения функции увеличиваются в 2 раза, а значения уменьшаются во столько же раз (исключение составляет точка ).

Отпустим в тундру удивлённое животное и продолжим изучать умножение функции на число: . Случаи не представляют интереса, поэтому рассмотрим отрицательные коэффициенты. Сначала распространённый частный случай :

Если ФУНКЦИЯ меняет знакна противоположный, то её график отображается симметрично относительно оси абсцисс.

Правило: чтобы построить график функции , нужно график отобразить симметрично относительно оси .

Пример 13

Построить график функции

Отобразим синусоиду симметрично относительно оси :

Ещё более наглядно симметрия просматривается у следующей типовой функции:

Пример 14

Построить график функции

График функции получается путём симметричного отображения графика относительно оси абсцисс:

Функции задают две ветви параболы, которая «лежит на боку». Обратная функция задаёт параболу целиком. С подобными графиками часто приходится иметь дело при нахождении площадей фигур, построении областей интегрирования двойных интегралов и в некоторых других задачах.

При умножении функции на отрицательное число , , построение графика следует выполнить в два этапа: сжатие (или растяжение) вдоль оси ординат, а потом – симметричное отображение относительно оси абсцисс. Конкретные примеры увидим в следующем топике.

Источник