Растяжение бетона при изгибе

Бетон используется во всех отраслях строительства. Обусловлено это высокой прочностью материала. Однако он также может иметь некоторые недостатки. Показатель прочности при сжатии у бетона один из самых высоких среди аналогичных материалов, а вот прочность на растяжении или при изгибе значительно уступает. На самом деле узнать свойства бетона крайне сложно, зная только вычислительные величины и соотношение отдельно взятых компонентов. Поэтому существует целый ряд методов и приёмов испытаний бетона на изгиб. Поговорим отдельно про каждый из них.

Как проводится испытание бетона на изгиб

Как правило, бетон не используется для работы на растяжение, тем не менее крайне важно знать его показатель предельной величины прочности на растяжение. Это стоит делать для того, что знать нагрузку, при которой возможно образование трещин, так как отсутствие подобной деформации необходимо для сохранения целостности конструкции и предупреждения разложения и коррозии. Трещины могут возникать при использовании высокопрочной арматуры из стали или при действии сдвигающей силы при диагональных напряжениях. Однако самой частой причиной возникновения щелей становится перепады температуры и усадка здания. В большинстве случаев при проектировании не принимается во внимание прочность бетона на растяжении, хотя данный показатель позволяет понять поведение конструкции в будущем.
Прямое приложение силы растяжения без числовой характеристики конического сечения (степень отклонения от окружности) создать крайне сложно, т.к. возможно воздействие вторичного напряжения забетонированными стержнями. Поэтому из-за таких проблем прочность бетона на растяжение измеряется путем изгиба прямого бетонного бруса без армирования. Максимальное значение растягивающего напряжения, которое образуется в нижних нитях испытуемой части, называется предел прочности на изгибе. Теоретический показатель вполне оправданно применим, т.к. напряжение взаимозависимо расстоянию от нейтральной оси.
График распределения величины нагрузки на бетон (которая предельно близка к разрушению) не является треугольным. Поэтому предел прочности на самом изгибе выше прочности на растяжение и обладает превышенным значением прочности, которое могло бы получиться при прямом растяжении испытуемых бетонных частей. Однако испытание оказывается весьма полезным, например, при конструировании дорожных плит и взлетно-посадочных полос в аэропортах, потому что напряжение не является в данных случаях критической определяющей.

Проверка качества бетона при изгибе и растяжении

Возможность бетона выдерживать нагрузки и не трескаться определяется значением растяжения. Данный показатель важен для железобетонной конструкции с целью исключения образования коррозии и увеличения эксплуатационного периода. Именно для этого и проводится испытание бетона на растяжение. На самом деле сгенерировать нужную растягивающую силу крайне сложно, поэтому зачастую во время испытаний используется брус без армирования в качестве испытательного пресса. Определяющим в данной ситуации является показатель растяжения в нижних волокнах. Это и станет пределом прочности на изгибе. Можно отметить, что более точным будет именно показатель изгиба, а не растяжение.
Максимальный показатель прочности на изгиб определяется несколькими факторами: параметры испытуемой части и условия подаваемой нагрузки. Существует две нагрузочные системы:
симметричная. Создается константный изгиб между 2-мя отдельно взятыми точками;
центральная. Образуется в середине пролета.
Метод симметрии позволяет определить более слабое место, где в будущем возможно образование трещин.
Определение прочности бетона на осевое растяжение
Основными предпосылками для испытания бетона на осевое растяжение выступают использование в перекрытиях и основаниях конструкционного бетона, а также использование гидротехнического раствора. Прочность определяется величиной сопротивления растяжению на оси или прочности на осевом растяжении. Обозначается сочетанием букв «Rt» и определяется по методике ГОСТ 10180-2012. Основные постулаты испытаний сохраняются, т.к. они аналогичны указанным параметрам во второй части десятого пункта.
Чтобы определить прочность на осевом растяжении, используются стандартные образцы 8-ки в 3-х вариантах. Рабочее сечение равняется 10*10 см и 15*15 см (это базовый экземпляр), а также 20*20 см.

Основная аппаратура

Для испытательных мероприятий используется разрывная машина и дополнительные приборы, которые указаны в ГОСТах в пункте 10 часть 2.
Алгоритм проведения испытаний
Выбранный образец крепится таким образом: ось образца должна проходить в центре каждого из захватов. Нагрузка подается постоянно с усилием (до полного уничтожения образца), равным показателю 52 кПа/с.
Сопротивление бетона растяжению можно вычислить по определенной формуле: .ФОРМУЛЫ НЕТ
В данном случае «β» является основным коэффициентом для экземпляров на осевое растяжение, он равен единице от начального размера. Для остальных случаев значение определяется экспериментальным способом. Все остальные показатели являются идентичными тем, что представлены в формуле.
Прочность бетона на изгиб
В большинстве случаев устойчивость к изгибу будет меньше показателя на сжатие практически в десять раз (при условии, что возраст бетона составляет 28 дней). Низкое значение обусловлено наличием трещин в нижней части структуры. По этой причине все железобетонные элементы оснащаются специальной арматурой ребристой формы, которая используется при возведении фундамента.
В случае испытания бетона могут использоваться различные параметры, однако особое внимание должно уделяться прочности на изгиб. Предел данного значения напрямую зависит от нескольких параметров: размера балки и уровня нагрузки. Узнать данный показатель можно по специальным методикам, которые мы приведем ниже.
Методика испытаний бетона на изгиб
Как правило, все операции проводятся с балками, которые должны иметь стандартные значения. Это в значительной степени снизит показатель погрешности и исключит вероятность ошибок в вычислениях всех данных. Линейный элемент подвергается испытанию с помощью прикладывания некоторых усилий в третьей части пролета. Для этого надо прибегнуть к использованию специализированного гидравлического оборудования. Для чего это надо? Такая техника позволит добиться сильного показателя давления, которое способно разрушить экземпляр. Это значение и станет определяющим показателем прочности конструкции на изгиб.
Стоит иметь в виду, что данная величина всегда будет меньше в сравнении с вертикальным сдавливанием. Показатель прочности важен для использования дорожных плит, т.е. для тех строений, на которых давление оказывается горизонтальным (или используются дополнительные воздействия), а не вертикальным способом. На сегодняшний день существует конкретная классификация моделей бетона, соответствующего стандартам М5-М50. Шаг равен пяти единицам (это также стоит учитывать). Важно отметить, что на практике значение давления не должно превышать 6 Мпа.
Как мы указывали выше, этот показатель является низким даже для самых устойчивых типов раствора. Такое положение дел обусловлено конструктивными особенностями бетона. Самым эффективным способом улучшения показателя считается использование каркасной основы. Как правило, это арматура, части которой соединены между собой. Металлические составляющие должны иметь рифленую поверхность за счет чего в несколько раз увеличивается коэффициент сцепления. Поэтому изгиб менее подвержен механическому воздействию и не разрушается так быстро. В большинстве случаев используется металлическая основа, но допустимы и другие варианты.
Важным моментом выступает тот факт, что показатель прочности может меняться в течение всего эксплуатационного периода конструкции. Для тех, кто хочет детальнее ознакомиться с измерением данного параметра стоит изучить специализированный государственный стандарт, который называется «ГОСТ 310.4-81». Именно в нем подробно указаны все предельно допустимые параметры и технологии измерений значений изгиба и растяжения бетонных конструкций.

Читайте также:  Растяжение связок голеностопного сустава ванночки

Подготовка к испытаниям

Для проведения всех испытаний лицо, ответственное за мероприятие, должно подготовить несколько образцов, которые выполняются в форме брусков. Размер должны быть следующие (значение указано в метрах):
0,2*0,2*0,8;
0,1*0,10*0,4;
0,15*0,15*0,6 (такой показатель является оптимальным для исследования).
В случае использования брусков других размеров к ним применяются масштабные коэффициенты, которые способны привести к эталону (вариант №3). Однако такие размеры имеют увеличенный вес, что в значительной степени добавляет сложности в проведении испытания.

Изготовление элементов

В период заполнения специальных форм бетонным раствором специалист должен провести армирование штыковым способом с помощью металлического стержня. Делается это для максимального уплотнения смеси. Формы должны полностью высохнуть. Отметим, что для окончательного схватывания требуется от 24 до 48 ч.
После затвердевания форм их необходимо раскрыть и полностью избавить от защитных элементов. Поверхность каждого элемента маркируется: указывается класс бетона, дата формирования, использования специальные примеси и прочие характеристики.

Хранение форм

После затвердения все элементы укладываются в лабораторный шкаф, где они должны пролежать 28 дней в абсолютно нормальных условиях. Это значит, что температура воздуха не должна превышать 20 градусов по Цельсию, а влажность 90%. В процессе хранения каждую форму поливают один раз в сутки (можно укладывать рядом увлажнённые опилки).

Испытания деталей

По истечении двадцати восьми дней лаборант достает бетонные формы и готовит их к определению прочности бетона на изгиб или растяжение. Для таких целей используется гидравлический пресс. На часть, расположенную внизу, устанавливается оборудование с двумя специальными опорами в форме ½ валиков с расстоянием между ними в 30 см. Сверху также должны присутствовать 2 опоры, установленные в центре элемента. На нижних опорах монтируется экспериментальный образец.
Затем на бетон подается нагрузка, которая распределяется равномерно, в центре давление обеспечивается за счет верхних валиков. На этапе разламывания образца пресс должен остановиться, а специалист фиксирует значение нагрузки в своем предельном максимуме. По формуле, приведённой выше, рассчитывается показатель прочности конструкции (обязательно учитывается конкретный вес, размер и выявленное в ходе испытание значение экземпляра). В качестве окончательного результата используется средний показатель 3-х вариантов формы. Все данные вносятся и протоколируются в специальном журнале.

Читайте также:  Голеностопный фиксатор при растяжении

Заключение

В данном материале мы рассмотрели все особенности и нюансы испытания бетона на растяжение и изгиб. Результаты, полученные в ходе исследований, являются абсолютно верными. Все представленные формулы можно смело использовать в своих экспериментах.

Ссылка на статью https://burosi.ru/ispitanie-betona-na-izgib-i-rastyajenie

Задать вопрос эксперту можно

1. На нашем сайте: https://burosi.ru/

2. По телефонам:

+7(812)386-11-75

+7(965)006-94-59 (WhatsApp, Telegramm)

3. Написать нам на почту

4. А также в комментариях к публикации.

Источник

Для тяжелых бетонов, применяемых в строительстве дорог и аэродромов, устанавливаются марки бетона по прочности на растяжение при изгибе, которые определяют путем испытания балочек квадратного сечения. Балку испытывают с приложением сил в 1/3 пролета.

Предел прочности на растяжение при изгибе RK3r (МПа) вычисляют по формуле

Прочность бетона при изгибе в несколько раз меньше его прочности при сжатии. Марки бетона на растяжение при изгибе: М5, Ml 0, Ml Я] М20, М25, МЗО, М35, М40, М45, М50

Прочность бетона при изгибе зависит от тех же факторов, что и прочность бетона при сжатии, однако ь эличественные зависимости в этом случае получаются другими. Соотношение повышается с увеличением прочности бетона. На практике обычно трудио достигнуть прочности бетона при изгибе более 6 МПа.

Волге точная зависимость прочности бетона при изгибе от качества цемента получается, если в ней учитывается активность цемента на изгиб, киторую определяют в соответствии с ГОСТ 310.4—81. В этом случае можно использовать в расчетах формулу

С увеличением возраста бетона его прочность при изгибе и растяжении возрастает более медленно, чем прочность при сжатии, и соотношение уменьшается.

Призменная прочность бетона

Под призменной прочностью понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы к размеру стороны квадрата, равном 4. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. В реальных конструкциях напряженное состояние бетона приближается к напряженному состоянию призм. Поэтому для расчета конструкций на осевое сжатие принята призменная прочность бетона, ее величина имеет максимальное значение при мгновенном загружении. При таком соотношении Н/b влияние опорных плит пресса в средней части призмы (участок разрушения), а также гибкости бетонного образца практически не сказывается. При этом имеется в виду, что эталонные призмы набирали прочность в нормальных условиях в течение 28 дней и что условия загружения соответствуют требованиям ГОСТа.

Призменная прочность равняется примерно 0,75 кубиковой прочности для класса бетона В25 и выше и 0,8 для класса бетона ниже В25.

Однородность бетона

Однородность бетона по прочности и другим свойствам — важнейший фактор надежности бетонных и железобетонных конструкций.

Расчетные сопротивления бетона по действующим нормам проектирования конструкций составляют лишь около половины проектных значений прочности, поскольку приходится ориентироваться не на средние показатели, а на статистически вероятную минимальную прочность бетона, качество которого подвержено случайным колебаниям.

Повышение однородности бетона открывает возможность его более, эффективного использования при требуемой обеспеченности его заданных параметров.

Однородность бетона по прочности наряду с другими факторами зависит от содержания и качества применяемых заполнителей, особенно если какие-либо свойства последних ограничивают получение бетона требуемой прочности.

При попытке получить высокопрочный бетон на гладком окатанном гравии слабым местом является контакт цементного камня с заполнителем, и чем больше будет в бетоне заполнителя, тем меньшей окажется прочность бетона. В этом случае неточность дозирования и неравномерное распределение заполнителя по объему бетона будут снижать однородность бетона по прочности и тем значительнее, чем выше проектная прочность бетона.

Если свойства заполнителя обеспечивают надлежащее сцепление с цементным камнем в бетоне, а прочность заполнителя достаточно высока в соответствии с условием (4.6), то возможные колебания содержания такого заполнителя в бетоне, как вытекает из вышеизложенного, сравнительно мало скажутся на прочности бетона и ее изменчивости.

Читайте также:  Ушиб или растяжение руки что делать

Наконец, если прочность заполнителя недостаточна для получения бетона требуемой прочности, то и колебания содержания, и неоднородность заполнителя могут весьма резко снизить однородность бетона.

Поэтому однородность бетона обычно связывают с его прочностью, хотя имеющиеся опытные данные нередко противоречивы. Долгое время считалось, что чем выше прочность бетона, тем выше его однородность. Это объясняли повышением культуры производства, усилением технологического контроля. Однако последующие исследования (А. Е. Десова, В. А. Вознесенского) показали, что высокопрочные бетоны, наоборот, имеют меньшую однородность. Последнее соответствует и представлениям, вытекающим из вышеприведенного анализа влияния заполнителей на прочность бетона.

Согласно ГОСТ 10268—80, предел прочности горной породы заполнителей для тяжелого бетона должен превосходить проектный предел прочности бетона не менее чем в 1,5 раза, если последний ниже 30 МПа, и не менее чем в 2 раза, если он составляет 30 МПа и выше. Однако здесь имеется в виду средний предел прочности по результатам испытаний пяти контрольных образцов породы на сжатие или двух проб щебня на дробимость по ГОСТ 8269—76. Если исходная горная порода неодородна по прочности, то минимальный статистически вероятный предел прочности заполнителя может оказаться гораздо ниже среднего. Не исключено, что он окажется ниже требуемого по формуле (4.6) и даже ниже проектной прочности бетона, причем вероятность этого с увеличением проектной прочности бетона возрастает.

Однородность легких бетонов помимо общих технологических факторов зависит от того, насколько рационально выбрана область применения того или иного пористого заполнителя. Имеет значение соотношение заданной прочности бетона и прочности заполнителя в бетоне, причем последняя должна оцениваться не только интегрально по средним показателям, но и характеристикой однородности. Если заданный предел прочности бетона превышает минимальное статистически вероятное значение предела прочности заполнителя, а тем более среднее его значение, то однородность бетона снижается.

Нередко стремятся получить легкий бетон как можно более высокой прочности, не учитывая при этом, что при Re>R3 повышение прочности бетона сопровождается снижением его однородности, поэтому расчетное сопротивление нельзя повысить без риска снизить обычный запас прочности конструкций. Отсюда в дополнение к вышеизложенному вытекают повышенные требования к прочности заполнителей для бетона и их однородности.

Повышение однородности заполнителей, т. е. приближение минимального статистически вероятного предела прочности к среднему, столь же важно, как повышение среднего предела прочности. Поэтому в последующих главах даются рекомендации по выбору путей повышения однородности заполнителей методами обогащения.

Для легких теплоизоляционных и конструкционно-теплоизоляционных бетонов большое значение имеет однородность по теплопроводности. Учитывая связь теплопроводности с плотностью бетона, обычно для упрощения задачи определяют однородность бетона по плотности, причем вычисляют не минимальную, а максимальную статистически вероятную плотность бетона.

На стабильность всех показателей качества бетона влияет однородность применяемых заполнителей также по влажности, крупности, форме зерен и т. д.

Поскольку высокоразвитая цементная промышленность СССР обеспечивает стабильность качества цемента, а механизация и автоматизация процессов приготовления и укладки бетонной смеси позволяют обеспечить требуемые технологические параметры, неоднородность заполнителей остается существенным препятствием повышению однородности бетона. Именно из-за неоднородности заполнителей в основном приходится увеличивать коэффициенты запаса прочности, используя потенциальные возможности бетона в среднем только наполовину.

В научно-технической литературе понятие однородности бетона в последнее время расширяется. Помимо характеристики изменчивости результатов испытания отдельных образцов бетона вводится понятие структурной однородности как характеристики изменчивости прочностных, деформативных и иных свойств в объеме образца. В этом аспекте рассматривается распределение между структурными компонентами бетона внутренних напряжений от внешней нагрузки, усадочных, температурных, примеры которых описаны выше. Мелкозернистый бетон структурно более однороден, чем бетон с крупным заполнителем, что в некоторых случаях дает ему определенные преимущества. Бетон на пористых заполнителях, свойства которых близки к свойствам цементного камня, структурно более однороден, чем обычный тяжелый бетон.

Для получения бетона с требуемыми свойствами необходимо отчетливо представить влияние на свойства бетона заполнителей, их содержания и свойств. Понимание всех аспектов этого влияния обеспечивает правильный выбор заполнителей для достижения заданного качества бетона или выбор области рационального применения в бетонах того или иного заполнителя.

Вопрос № 43

Дата добавления: 2016-10-07; просмотров: 2595 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник