Расчетные значения сопротивления арматуры растяжению

Расчетные значения сопротивления арматуры растяжению thumbnail

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Читайте также:  На сколько дается больничный лист при растяжении связок

Источник

Нормативные значения прочностных характеристик арматуры

2.2.2.1 Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению , принимаемое в зависимости от класса арматуры по таблице 7.

Таблица 7

Расчетные значения прочностных характеристик арматуры

2.2.2.2 Расчетные значения сопротивления арматуры растяжению определяют по формуле

, (10)

где — коэффициент надежности по арматуре, принимаемый равным:

для предельных состояний первой группы:

1,1 — для арматуры классов А240, А300 и A400;

1,15 — для арматуры классов А500, А600 и А800;

1,2 — для арматуры классов А1000, В500, Вр1200-Вр1500, К1400, К1500;

для предельных состояний второй группы — 1,0.

Расчетные значения сопротивления арматуры растяжению приведены (с округлением) для предельных состояний первой группы в таблице 8, второй группы — в таблице 7. При этом значения для предельных состояний первой группы приняты равными наименьшим контролируемым значениям по соответствующим ГОСТ.

Расчетные значения сопротивления арматуры сжатию принимают равными расчетным значениям сопротивления арматуры растяжению , но не более значений, отвечающих деформациям укорочения бетона, окружающего сжатую арматуру: при кратковременном действии нагрузки — не более 400 МПа, при длительном действии нагрузки — не более 500 МПа. Для арматуры классов В500 и А600 граничные значения сопротивления сжатию принимаются с коэффициентом условий работы равным 0,9 (таблица 8).

Таблица 8

2.2.2.3 В необходимых случаях расчетные значения прочностных характеристик арматуры умножают на коэффициенты условий работы , учитывающие особенности работы арматуры в конструкции.

Расчетные значения сопротивления хомутов и отогнутой поперечной арматуры классов А600-А1000, Вр1200-Вр1500 и канатной принимают не более 0,8 (с учетом всех потерь) и не более 300 МПа. В расчетах принимают большее из указанных значений. Расчетные значения для арматуры классов А240-А500, В500 приведены в СП 52-101.

Деформационные характеристики арматуры

2.2.2.4 Основными деформационными характеристиками арматуры являются значения:

относительных деформаций удлинения арматуры при достижении напряжениями расчетного сопротивления ;

модуля упругости арматуры .

2.2.2.5 Значения относительных деформаций арматуры принимают равными:

для арматуры с физическим пределом текучести

; (11)

для арматуры с условным пределом текучести

. (12)

2.2.2.6 Значения модуля упругости арматуры принимают одинаковыми при растяжении и сжатии и равными:

=1,8·10 МПа — для арматурных канатов (К);

=2,0·10 МПа — для остальной арматуры (А и В).

Диаграммы состояния арматуры

2.2.2.7 При расчете железобетонных элементов по нелинейной деформационной модели в качестве расчетной диаграммы состояния (деформирования) арматуры, устанавливающей связь между напряжениями и относительными деформациями арматуры, принимают для арматуры с физическим пределом текучести классов А240-А500, В500 двухлинейную диаграмму (рисунок 2, а), а для арматуры с условным пределом текучести классов А600-А1000, Вр1200-Вр1500, К1400, К1500 — трехлинейную (рисунок 2, б).

а — двухлинейная; б — трехлинейная

Рисунок 2 — Диаграммы состояния растянутой арматуры

Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми.

2.2.2.8 Напряжения в арматуре согласно двухлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций по формулам:

при

; (13)

при

. (14)

Значения , и принимают согласно пп.2.2.2.5, 2.2.2.6 и 2.2.2.2. Значения относительной деформации принимают равными 0,025.

2.2.2.9 Напряжения в арматуре согласно трехлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций по формулам:

при

; (15)

при

. (16)

Значения , и принимают согласно пп.2.2.2.5, 2.2.2.6 и 2.2.2.2.

Значения напряжений принимают равными 0,9 , а напряжений — равными 1,1 .

Значения относительных деформаций принимают равными , а деформаций — равными 0,015.

Источник

Cодержание:

1. Модули упругости основных строительных материалов.

2. Начальные модули упругости бетона.

3. Нормативные сопротивления бетона.

4. Расчетные сопротивления бетона.

5. Расчетные сопротивления бетона растяжению.

6. Нормативные сопротивления арматуры.

7. Расчетные сопротивления арматуры.

8. Нормативные и расчетные сопротивления стали.

9. Заменяемые марки стали.

10. Список использованной литературы.

Таблица 1. Модули упругости для основных строительных материалов.

(вернуться к списку таблиц)

МатериалМодуль упругости Е, МПа
Чугун белый, серый(1,15…1,60) • 105
»      ковкий1,55 • 105
Сталь углеродистая(2,0…2,1) • 105
»     легированная(2,1…2,2) • 105
Медь прокатная1,1 • 105
»    холоднотянутая1,3 • 103
»    литая0,84 • 105
 Бронза фосфористая катанная1,15 • 105
Бронза марганцевая катанная1,1 • 105
Бронза алюминиевая литая1,05 • 105
Латунь холоднотянутая(0,91…0,99) • 105
Латунь корабельная катанная1,0 • 105
Алюминий катанный0,69 • 105
Проволока алюминиевая тянутая0,7 • 105
Дюралюминий катанный0,71 • 105
Цинк катанный0,84 • 105
Свинец0,17 • 105
Лед0,1 • 105
Стекло0,56 • 105
Гранит0,49 • 105
Известь0,42 • 105
Мрамор0,56 • 105
Песчаник0,18 • 105
Каменная кладка из гранита(0,09…0,1) • 105
»    из кирпича(0,027…0,030) • 105
Бетон (см. таблицу 2) 
Древесина вдоль волокон(0,1…0,12) • 105
»    поперек волокон(0,005…0,01) • 105
Каучук0,00008 • 105
Текстолит(0,06…0,1) • 105
Гетинакс(0,1…0,17) • 105
Бакелит(2…3) • 103
Целлулоид(14,3…27,5) • 102
Читайте также:  Растяжение мышц шеи боль

Примечание: 1. Для определения модуля упругости в кгс/см2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

(вернуться к списку таблиц)

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

модули упругости бетона по новым нормам

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

модули упругости бетона по старому СНиПу

Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см2.

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

нормативные сопротивления бетона по новым нормам

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

расчетные значения сопротивления бетона сжатию

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

расчетные сопротивления бетона по старым нормам

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

(вернуться к списку таблиц)

расчетное сопротивление бетона растяжению

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

(вернуться к списку таблиц)

нормативные сопротивления арматуры

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

нормативные сопротивления арматуры по старым нормам

Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)

(вернуться к списку таблиц)

расчетные сопротивления для арматуры

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса В

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

таблица расчетных значений сопротивления стали

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

марки стали

Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.

Список использованной литературы:

1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»

2. СП 52-101-2003

3. СНиП II-23-81 (1990) «Стальные конструкции»

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.

21-11-2013: Badyoruy

Отличная подборка

03-10-2015: мухаммад

спасибо вам всеесть то что надо

26-04-2016: Василий

Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!

26-04-2016: Доктор Лом

Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.

26-04-2016: Владимир

Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно

26-04-2016: Доктор Лом

Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо «Модуль упругости Е, МПа» я бы прописал «Модуль упругости Е, МПа•10^-5», то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять «•10^5». Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.

Читайте также:  Сопромат решение задач на растяжение сжатие решение

05-08-2016: Александр

Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10…12.

05-08-2016: Доктор Лом

Вполне возможно, вот только и ГигаПаскали — не самая наглядная и простая для восприятия размерность.

Источник

2.19.Основной прочностной характеристикой
арматуры является нормативное значение
сопротивления растяжениюRs,n,
равное наименьшему значению физического
или условного предела текучести и
принимаемое в зависимости от класса
арматуры по табл.2.7.

Таблица 2.7

Арматура классов

Номинальный диаметр арматуры, мм

Нормативные значения сопротивления
растяжению Rs,nи расчетные значения сопротивления
растяжению для предельных состояний
второй группыRs,ser,
МПа (кгс/см2)

А240

6 — 40

240 (2450)

А300

10 — 40

300 (3050)

А400

6 — 40

400 (4050)

А500

6 — 40

500 (5100)

А540

20 — 40

540 (5500)

А600

10 — 40

600 (6100)

А800

10 — 40

800 (8150)

А1000

10 — 40

1000 (10200)

В500

3 — 12

500 (5100)

Вр1200

8

1200 (12200)

Вр1300

7

1300 (13200)

Вр1400

4; 5; 6

1400 (14300)

Вр1500

3

1500 (15300)

К1400 (К-7)

15

1400 (14300)

К1500 (К-7)

6; 9; 12

1500 (15300)

К1500 (К-19)

14

1500 (15300)

2.20.Расчетные значения сопротивления
арматуры растяжению для предельных
состояний первой группыRsопределяют по формуле

Расчетные значения сопротивления арматуры растяжению                                                                           
(2.2)

где γs— коэффициент
надежности по арматуре, принимаемый
равным:

1,1 — для арматуры классов А240, А300, А400;

1,15 — для арматуры классов А500, А600, А800;

1,2 — для арматуры классов А540, А1000, В500,
Вр1200, Вр1500, К1400 и К1500.

Расчетные значения Rsприведены (с округлением)
в табл. 2.8.
При этом значения Rs,nприняты равными наименьшим контролируемым
значениям по соответствующим ГОСТ.

Расчетные значения сопротивления
арматуры растяжению для предельных
состояний второй группы Rs,serпринимают равными соответствующим
нормативным сопротивлениямRs,n(см. табл.2.7).

2.21.Расчетные значения сопротивления
арматуры сжатиюRscпринимаются равными расчетным значениям
сопротивления арматуры растяжениюRs,
но не более 400 МПа, при этом для арматуры
класса В500Rsc= 360 МПа.

Расчетные значения Rscприведены в табл. 2.8.

Таблица 2.8

Арматура классов

Расчетные значения сопротивления
арматуры для предельных состояний
первой группы, МПа (кгс/см2)

Арматура классов

Расчетные значения сопротивления
арматуры для предельных состояний
первой группы, МПа (кгс/см2)

растяжению Rs

сжатию Rsc

растяжению Rs

сжатию Rsc

А240

215 (2200)

215 (2200)

В500

415 (4250)

360 (3650)

А300

270 (2750)

270 (2750)

Вр1200

1000 (10200)

400 (4100)

А400

355 (3600)

355 (3600)

Вр1300

1070 (10900)

-«-

А500

435 (4450)

400 (4100)

Вр1400

1170 (11900)

-«-

А540

450 (4600)*

200 (2000)

Вр1500

1250 (12750)

-«-

А600

520 (5300)

400 (4100)

К1400

1170 (11900)

-«-

А800

695 (7050)

-«-

К1500

1250 (12750)

-«-

А1000

830 (8450)

-«-

*Если при упрочнении вытяжкой
арматуры класса А540 контролируется
удлинение и напряжение арматуры,
расчетное сопротивление растяжениюRsдопускается принимать
равным 490 МПа (5000 кгс/см2).

При расчете конструкции на действие
только постоянных и длительных нагрузок,
когда расчетное сопротивление бетона
сжатию Rbпринимается с
учетом коэффициента γb1= 0,9 (см. п.2.8)
расчетное сопротивление арматуры сжатиюRscдопускается принимать
не более 500 МПа (5100 кгс/см2), при
этом для арматуры класса А600 принимаетсяRsc= 470 МПа (4800 кгс/см2).

Во всех случаях для арматуры класса
А540 принимается Rsc= 200 МПа
(2030 кгс/см2).

2.22.Расчетное сопротивление растяжению
ненапрягаемой поперечной арматуры
(хомутов и отогнутых стержней)Rswснижают по сравнению сRsпутем умножения на коэффициент условий
работы γs1= 0,8, но принимают
не более 300 МПа. Расчетные значенияRswприведены (с округлением) в табл.2.9.

Таблица 2.9.

Класс арматуры

А240

А300

А400

А500

В500

Расчетное сопротивление поперечной
арматуры RswМПа (кгс/см2)

170 (1730)

215 (2190)

285 (2900)

300 (3060)

300 (3060)

2.23.При расположении стержней
арматуры классов Вр1200 — Вр1500 попарно
вплотную без зазоров расчетное
сопротивление растяжениюRsумножается на коэффициент условий
работы γs2= 0,85.

2.24.Значение модуля упругости
арматуры всех видов, кроме канатной,
принимается равнымEs=
200000 МПа (2000000 кгс/см2), а для канатной
арматуры классов К1400 и К1500 —Es= 180000 МПа (1800000 кгс/см2).

Соседние файлы в папке ГСХ первый проект

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник