Расчетное сопротивление сварного стыкового шва при растяжении

Расчетное сопротивление сварного стыкового шва при растяжении thumbnail

Среди всех видов соединений для металлов и неметаллов, сварное  соединение считается самым прочным и надежным. Оно реализуется за счет молекулярного сцепления, которое возникает между материалами за счет воздействия высокой температуры. Чтобы создать надежную монолитную деталь, важно правильно произвести расчет сварных соединений.

Содержание статьи

ХАРАКТЕРИСТИКА СВАРНЫХ СОЕДИНЕНИЙ

Существует много видов сварки, но самой распространенной считается электрическая, которая разделяется на контактную и дуговую. Именно такими способами чаще всего выполняются соединений металлов. Чтобы они были максимально качественными, необходимо провести расчеты с учетом особенностей каждого вида соединения и рассчитать предельные усилия на металл.

Стыковые скрепления могут по шву разрушаться, при неправильной организации сварного шва на отрыв. «Правильным» швом считается тот, который имеет такую же прочность, как и материал, из которого выполнены детали. Чаще всего деформация и разлом металла происходит в зоне термического воздействия. Это участок, который прилегает по шву изделия. Все дело в том, что при воздействии высокой температуры, изделие теряет свои изначальные механические свойства. Для этого и необходимо производить расчеты, чтобы учитывать прочность элемента и нагрузку, которую он сможет выдержать.

Особенность угловых соединений и сечений зависит от качества металла. Основное вычисление производится по самому опасному (наименее прочному) сечению. Угловой шов осуществляется между двумя деталями, которые расположены по отношению друг к другу под углом 90 градусов. Чтобы просчитать прочность, нужны данные для вычисления – катет треугольника поперечного сечения (k) и периметр шва (L).  Решение задачи осуществляется по следующей формуле:

A = k·sin45*L = 0,7k·L.

Для точечного шва необходимо учесть такие моменты:

  • он производится исключительно на сварной плоской поверхности;
  • важно, чтобы на все точки приходилась равномерная нагрузка;
  • в формуле для углового шва допускается расхождение напряжений среза на 10-20%.

ФОРМУЛЫ РАСЧЕТА РАЗЛИЧНЫХ СВАРНЫХ СОЕДИНЕНИЙ

В силу того, что существует много разновидностей сцепления металла, для каждого из них индивидуально производится расчет сварных соединений. По расположению свариваемых деталей различают следующие типы:

  • стыковые, в которых детали соединяются торцами по отношению друг к другу. То есть, в результате одна часть становится продолжением второй. Такое сцепление считается самым рациональным и при подаче усилий имеет наименьшую концентрацию напряжения. Они выполняются двумя способами – с прямым и с косым швом;
  • угловые – это те, при которых детали во время варения располагаются под углом, то есть перпендикулярно друг к другу;
  • нахлесточные соединения характеризуются положением деталей, при котором один элемент немного находит на второй. Такая технология часто применяется для сваривания деталей из металла, толщиной не более 5 миллиметров. Нахлест делается с целью укрепления будущего шва;
  • тавровые скрепления немного похожи на угловые. Здесь тоже детали располагаются перпендикулярно, но при этом скрепляются именно торцами.

Каждое из них разделяется еще на несколько подвидов, в зависимости от которых и производится расчет сварных соединений. Все эти виды варятся угловыми (валиковыми)  швами.

Для расчета сварных соединений применяются общепринятые формулы. В свободном доступе существует программа, позволяющая рассчитать любые виды стыков. Для этого достаточно ввести все необходимые параметры.

ОСНОВНЫЕ ПАРАМЕТРЫ ДЛЯ РАСЧЕТА

Для совершения расчета сварного шва необходимо знать некоторые параметры, от которых будет зависеть показатель прочности полученного скрепления элементов.

Процесс растяжения и сжатия вычисляется по этой формуле:

Рассмотрим все показатели:

  • Ус – это условия работы. Данный параметр является общепринятым и указывается в таблицах стандартных показателей для вычислений углового шва;
  • Ru – это сопротивление, которое характеризуется качеством металла. Оно указано в специальных таблицах;
  • Ry – сопротивление материала, согласно пределу текучести, определяется по таблицам;
  • Rwy – сопротивление, определяющееся в соответствии с существующим пределом прочности, взамен «Rwy» разрешается применять «Rwu/γu»;
  • N – это показатель максимальной нагрузки, которую может выдержать шов, и расчет напрямую от него зависит.
  • t – толщина материала, из которого изготовлена свариваемая деталь;
  • lw – максимальная продолжительность всего шва, ее уменьшают на значение 2t;

При варении деталей и конструкций из разного материала, Ry  и Ru при сварке разных металлов определяется по металлу с наименьшей прочностью. Расчет сварного шва на срез определяется по заготовкам и ориентировка должна быть на материал с меньшей прочностью.

Расчетное сопротивление сварного элемента зависит от растяжения в сварочном шве. Из-за этого в самой дорожке всегда есть небольшой уклон, который позволяет качественно сцепить две детали разного металла.

РАСЧЕТ ДЛЯ КОНСТРУКЦИИ С УГЛОВЫМИ ШВАМИ

Для конструкции, в которой предусмотрены угловые швы, вычисление сварного шва на отрыв проводится немного по другой формуле, так как следует учесть силу, которая направлена к центру тяжести. При подсчете, следует выбирать сечение с высокой опасностью. Расчет сварного шва на срез производится по общепринятой стандартной формуле:

Каждое из представленных значений и  параметров играет важную роль в качестве будущего скрепления, вне зависимости от типа металлов:

N – самая высокая нагрузка, оказывающая максимально давление на соединение;
Βf, совместно с βz – коэффициенты, которые берутся из таблицы.

Как правило:

βf – 0,7;
βz – 1;
причем, по определению, марка стали значения не имеет.

Rwf – этот показатель указывает на сопротивление срезу. Он берется из ГОСТовских таблиц;

Rwz – сопротивление на линии сплавления, значение определяется по таблице;
с – коэффициент рабочих условий, определяется согласно табличным данным;
γwf – 0,85 для шва, материал которого имеет нормативное сопротивление равное 4200 кгс/см²;
γwz – 0,85 для любого вида стали;
γwf и γwz берется из специальных нормативных таблиц;

kf – толщина будущего шва, измеряемая по линии сплавления;
lw – общая длина, заниженная на 10 мм.

СОЕДИНЕНИЕ ВНАХЛЕСТ

Это определенная технология выполнения шва, при которой один элемент накладывается на другой. Вычисление производится в зависимости от положения и типа шва, так как внахлест бывают лобовые, угловые и фланговые швы.

N / (βz kf lw) ≤ Rwz γwz γc

Рассчитывая прочность дорожки при скреплении металлических элементов внахлест, используется минимальная S сечения, которая проходит сквозь меньшую высоту условного треугольника шва (без учета наплыва). Для ручной сварки при равных катетах шва эта высота равняется 0,7kf.

Необходимость расчета по сечению с меньшей расчетной площадью напрямую связана с использованием сварочных материалов и с прочностью, превышающей прочность основного материала соединяемых элементов.

При полуавтоматическом и автоматическом виде сварки провар в самом углу (при угловом шве внахлест) получается намного глубже, чем при варении ручным дуговым методом. За высоту, берется условный показатель βf kf или βzkf , примеры которого можно увидеть в таблице.

ОШИБКИ ПРИ СВАРНОМ СОЕДИНЕНИИ

Если произвести неправильный расчет угловых сварных швов, тогда при работе может возникнуть ряд ошибок и дефектов. Рассмотрим самые распространенные среди них:

  • возникновение пор – это те области, в которые попадают газы, выделяющиеся во время плавления металлического изделия и электрода;
  • подрезы – это канавы в детали, возникающие вдоль шва сбоку, на его границе;
  • непровары – это области, где металл некачественно расплавился и при этом в соединении появляются некоторые пробелы;
  • неметаллические включения являются одной из самых грубых ошибок. При этом в область шва попадают шлаки, которые не успевают выйти над швом. Если это допустить при работе с тонким металлом, то прочность соединения не будет качественной и это приведет к возникновению трещин в будущем;
  • горячими трещинами называют дефект, при котором металл во время плавления дает трещину (межкристаллитное разрушение);
  • холодные трещины возникают после остывания. Они появляются в результате окисления во время плавления. Именно из-за этого и нужны газы, которые надежно защищают расплавленную металлическую массу от попадания кислорода.

В завершение хочется отметить, что существует множество различных формул, по которым производится вычисление для создания качественного шва. Для этого используются различные параметры, в зависимости от вида шва, положения деталей, их площади, толщины и материала, из которого они выполнены. Кроме этого, следует учесть предельные усилия на деталь из внешней среды (это критическое усилие, которое воспринимает изделие в наклонном и пространственном сечениях элемента при определенной прочности материала).

Источник

Так как сопротивление металла сдвигу или срезу при действии касательных напряжений значительно меньше сопротивления растяжению, сжатию или изгибу при действии нормальных напряжений, то расчет угловых сварных швов (расчет на условный срез) сводится к определению касательных напряжений, которые должны быть меньше расчетного сопротивления.

Предполагается, что разрушение углового сварного шва может произойти в двух плоскостях: по металлу шва и по границе сплавления, поэтому расчет угловых швов производится для этих двух сечений:

расчетные сечения угловых швов

Рисунок 529.3. Расчетные сечения угловых швов

А теперь рассмотрим возможные напряженные состояния элементов, соединяемых угловыми швами, более подробно.

Расчет угловых сварных швов производится по следующим формулам:

1. Расчет угловых швов при центральном растяжении (рисунок 529.2.д)) или сжатии (действии силы N)

виды сварных соединений при использовании угловых швов

Рисунок 529.2. Основные виды сварных соединений с угловыми швами.

И лобовые и фланговые швы рассчитываются на условный срез

1.1. по металлу шва (сечение 1 на рисунке 529.3):

тwf = N/(βfkflw) ≤ Rwfγc (531.1)

где N — значение продольной растягивающей (или сжимающей) силы, приложенной по оси, совпадающей с центром тяжести сечения (без эксцентриситета). Может измеряться в кгс, тс, Н, кН;

βf — безразмерный коэффициент, определяемый по следующей таблице:

Таблица 529.2. (согласно СНиП II-23-81* «Стальные конструкции»)

коэффициенты для угловых швов по старому снипу

Примечание: почему при расчетах я рекомендую пользовать именно этой таблицей, а не таблицей из актуализированной редакции указанного СНиПа, достаточно подробно объясняется в статье, посвященной рассмотрению основных видов сварных швов.

kf — катет углового шва. Принимается по конструктивным требованиям или согласно расчету. Измеряется в мм или см.

lw — суммарная длина угловых швов с учетом непровара в начале и в конце шва. Например, если рассчитывается один угловой шов длиной l, то его расчетная длина составит:

lw = l — 2t (529.1.1)

где t — толщина наименьшей из свариваемых деталей.

В целом произведение βfkflw — это и есть площадь рассматриваемого сечения.

Rwf — расчетное сопротивление срезу по металлу шва. Определяется по следующей таблице:

Таблица 530.2. Расчетные сопротивления сварных соединений (согласно СП 16.13330.2011 «Стальные конструкции»)

расчетные сопротивления сварных соединений

Примечания:

1. Значения коэффициентов надежности по металлу шва γwm следует принимать:

γwm = 1,25 — при Rwun ≤ 490 Н/мм2 (4900 кг/см2);

γwm = 1,35 — при Rwun ≥ 590 Н/мм2 (5900 кг/см2)

Значения Rwun и Rf определяются по следующей таблице:

Таблица 531.1. (согласно СП 16.13330.2011 «Стальные конструкции»)

временные сопротивления разрыву для сварочных материалов

Примечание:

В ныне неактуальном СНиП II-23-81* и старых справочниках, таблица вида 530.2 сопровождалась следующими примечаниями:

1. Для угловых швов, выполняемых ручной сваркой, значения Rwun принимают равными значениям временного сопротивления разрыву металла шва (σв) согласно ГОСТ 9467-75*.

Приводить здесь таблицу из ГОСТа, по которой можно определить временное сопротивление разрыву шва, я не буду. Просто скажу, что в маркировке электродов это значение уже указано в кгс/мм2. Например:

— для электродов Э38 Rwun = σв = 38 кгс/мм2 (3800 кгс/см2)

— для электродов Э42А Rwun = σв = 42 кгс/мм2 (4200 кгс/см2) и так далее вплоть до Э150 (сейчас такие марки электродов даже и не рассматриваются).

На мой взгляд это учень удобно, тем не менее сейчас все принято выражать в единицах системы СИ, что и отображено в таблице 531.1.

γс — коэффициент условий работы элементов конструкций и соединений, принимаемый по следующей таблице:

Таблица 530.3. Коэффициенты условий работы элементов и соединений стальных конструкций (согласно СП 16.13330.2011 «Стальные конструкции»)

коэффициенты условий работы элементов стальных конструкций

1.2. По металлу границы сплавления (сечение 2 на рисунке 529.3):

тwz = N/(βzkflw) ≤ Rwzγc (531.2)

где βz — безразмерный коэффициент, определяемый по таблице 529.2.

Rwz — расчетное сопротивление металла на границе сплавления, определяемое по таблице 530.2, где Run — нормативное сопротивление проката, определяемое по следующей таблице:

Таблица 171.8. (согласно ГОСТ 27772-88 для стальных конструкций зданий и сооружений)

таблица расчетных значений сопротивления стали

Примечание: заменяемые марки стали приводятся отдельно.

Тут добавлю, что при центральном растяжении или сжатии элемента из свариваемых деталей во фланговых швах на обеих катетах шва будут действовать касательные напряжения. В лобовых швах на одном из катетов будут действовать растягивающие или сжимающие нормальные напряжения, имеющие такое же значение, как и касательные напряжения на втором катете.

Я это все к тому, что иногда в справочниках напряжения, определяемые для других видов напряженно-деформированного состояния обозначаются как нормальные, т.е. литерой «σ». Формально тут большой ошибки нет и делается это больше для того, чтобы различать напряжения, возникающие при действии изгибающего момента и других возможных воздействий. Но все равно нельзя забывать, что расчет производится именно на условный срез, т.е. на действие касательных напряжений, имеющих, впрочем, такое же значение, как нормальные на втором катете. А вот направления действия касательных напряжений действительно могут быть разными, что мы вскоре и увидим.

2. Расчет сварных соединений с угловыми швами при действии изгибающего момента М в плоскости, перпендикулярной плоскости расположения швов

Т.е. в данном случае имеется в виду, что через рассматриваемые швы можно провести одну плоскость и эта плоскость будет перпендикулярна плоскости действия момента. К положению плоскости, в которой может произойти разрушение шва, данная формулировка никакого отношения не имеет.

Как правило  такая ситуация возникает при расчете сварного соединения втавр двухсторонними швами (рисунок 529.2.г)) или односторонними швами (рисунок 529.3). При этом угловые швы рассчитываются на условный срез

2.1. по металлу шва (сечение 1 на рисунке 529.3):

М/Wf ≤ Rwfγc (531.3)

2.2. по металлу границы сплавления (сечение 2 на рисунке 529.3):

М/Wz ≤ Rwzγc (531.4)

где М — значение изгибающего момента, определяемое по эпюре «М».

Wf и Wz — моменты сопротивления расчетных сечений сварного соединения по металлу шва и по границе сплавления с металлом соответственно.

Например при соединении втавр двухсторонними швами моменты сопротивления составят:

Wf = 2(βfkflw2/6) = βfkflw2/3 (531.3.1)

Wz = 2(βzkflw2/6) = βzkflw2/3 (531.4.1)

Как правило, разделив момент М на момент сопротивления W, мы определяем нормальные напряжения, поэтому в некоторых старых учебниках и справочниках (например: А.П.Мандриков, Примеры расчета металлических конструкций, М.-1991) формулы (531.3) и (531.4) имеют другую форму записи, примерно такую:

σwf = М/Wf ≤ Rwfγc (531.3.2)

σwz = М/Wz ≤ Rwzγc (531.4.2)

Но сути это не меняет.

Примечания:

1. В СНиП II-23-81* и старых справочниках значение расчетного сопротивления Rwf и Rwz при всех возможных расчетных случаях дополнительно умножалось на коэффициенты условий работы шва γwf или γwz соответственно.

Значение этих коэффициентов принималось равным 1 во всех случаях, кроме конструкций, возводимых в климатических районах I1 (согласно ГОСТ 16350-80: очень холодный, среднемесячная температура воздуха в январе от -50 до -30), I2 (холодный, температура от -30 до -15), II2 (арктический восточный, температура от -28 до -18) и II3 (арктический западный, температура от -30 до -2), для которых γwf = 0.8 при Rwun = 410 МПа и γwz = 0.85 для всех сталей.

На мой взгляд данное ограничение значения расчетного сопротивления вводилось с целью уменьшения риска хрупкого разрушения сварного соединения при низких температурах. Сейчас оно не действует, но думаю, знать о нем надо.

2. Вообще-то это примечание следовало сделать при рассмотрении первого раздела, но он и так получился перенасыщенным информацией, поэтому оставлю это примечание здесь.

3. Расчет угловых швов при действии изгибающего момента М в плоскости, перпендикулярной плоскости швов и действии продольной силы N

Подобная ситуация часто встречается при расчете разного рода опорных площадок, поэтому я выделил ее в отдельный раздел, хотя в СП 16.13330.2011 такой вариант загружения отдельно не рассматривается.

Тем не менее, при загружении опорной площадки некоторой силой, приложенной с эксцентриситетом, возникает следующая ситуация, которую я решил проиллюстрировать картинкой из все того же А.П.Мандрикова:

напряжения у угловых швах при эксцентриситете приложения нагрузки

Рисунок 531.1.

В этом случае угловые швы рассчитываются на условный срез

3.1. по металлу шва:

(тwf2 + σwf2)1/2 ≤ Rwfγc (531.5)

3.2. по металлу границы сплавления:

(тwz2 + σwz2)1/2 ≤ Rwzγc (531.6)

где значение касательных напряжений определяется в зависимости от рассматриваемого сечения по формулам (531.1) и (531.2), а значение условно нормальных напряжений — по формулам (531.3.2) и (531.4.2) соответственно.

Примечание:

Конечно же согласно требований ныне действующих нормативных документов более правильно вести речь только о касательных напряжениях относительно осей х и у. Т.е. тwf = тy, σwf = тх и так далее, но как уже говорилось, на окончательные результаты расчета это ни как не влияет, при этом старый подход выглядит более наглядным.

4. Расчет угловых швов при действии изгибающего момента М в плоскости сварных швов

Подобная ситуация часто встречается при расчете стыковых соединений с накладками, т.е. при одновременном использовании и лобовых и фланговых швов (см. рисунок 529.2.в)), а также при соединении внахлест лобовыми или фланговыми швами (см. рисунок 529.2.а) и б)). Это означает, что как и в предыдущем случае касательные напряжения действуют как вдоль оси х, так и вдоль оси у. Соответственно задача сводится к определению равнодействующей этих двух напряжений. Расчет в этом случае выполняется по следующим формулам:

4.1. по металлу шва:

тМ = М(х2 + у2)1/2/(Ifx + Ify) ≤ Rwfγc (531.7)

4.2. по металлу границы сплавления:

тМ = M(x2 + y2)1/2/(Izx + Izy) ≤ Rwzγc (531.8)

где х и у — координаты рассматриваемой точки сварного соединения относительно главных осей х-х и у-у. Как правило рассматриваемая точка максимально удалена от центра тяжести О расчетного сечения.

Ifx, Ify, Izx, Izy — моменты инерции рассматриваемых сечений швов относительно главных осей.

Так как рассчитываемые швы находятся в одной плоскости с действующим моментом, то для определения указанных моментов инерции необходимо кроме катета, длины шва и соответствующих коэффициентов также знать расстояние между швами, чего не требовалось при рассмотрении швов, находящихся в плоскости, перпендикулярной плоскости действия момента.

В нормативных документах вопросу определения моментов инерции для угловых сварных швов внимания не уделяется, но на мой взгляд это достаточно сложный вопрос и вообще его рассмотрению следует посвятить отдельную статью, а пока ограничимся следующим примером:

При соединении внахлест только лобовыми швами и при расстоянии между центрами тяжести лобовых швов, равном l (центры тяжести и расстояние l на рисунке 529.2.а) не показаны), значения моментов инерции для сечения металла шва составят:

Ifx = 2βfkflw3/12 = βfkflw3/6 (531.9)

Ifу = 2βfkf3lw/12 + 2(l/2)2βfkflw = βfkf3lw/6 + l2βfkflw/2 (531.10)

5. Расчет угловых швов при действии момента М, продольной N и поперечной V сил в плоскости сварных швов

Это наиболее общий случай напряженно-деформированного состояния, проиллюстрированный в СП 16.13330.2011 следующим образом:

расчетная схема угловых сварных швов при общем случае загружения

Рисунок 531.2. Расчетная схема сварного соединения с угловыми швами в общем случае загружения.

Расчет в этом случае выполняется по следующим формулам:

5.1. по металлу шва:

тf ≤ Rwfγc (531.11)

5.2. по металлу границы сплавления:

тz ≤ Rwzγc (531.12)

где тf и тz — касательные напряжения в рассматриваемой точке расчетного сечения сварного соединения по металлу шва и по металлу границы сплавления, определяемые по формуле:

т = ((тN + тМх)2 + (тV + тМу)2)1/2 (531.13)

где тN и тV — касательные напряжения, определяемые по формулам (531.1) и (531.2), а тМх и тМу — горизонтальная и вертикальная составляющие касательных напряжений при действии момента, определяемые по следующим формулам:

тМх = Мх/Iy (531.14)

тМу = Му/Iх (531.15)

Но и это еще не все. При проектировании строительных конструкций необходимо также соблюдать конструктивные требования, предъявляемые к сварным соединениям.

Источник