Расчетное сопротивление растяжению бетона в12 5

Расчетное сопротивление растяжению бетона в12 5 thumbnail

Вернуться на страницу «Расчеты КМ и КЖ»

Сопротивление бетона на сжатие и растяжение

СП 63.13330.2012

6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:

Значения коэффициента надежности по бетону при сжатии γbпринимают равными:

для расчета по предельным состояниям первой группы:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 — для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.

Таблица 6.7

ВидБетонНормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser, МПа, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность) Rb,n, Rb,serТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевое Rbt,n и Rbt,serТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,260,310,410,550,630,891,001,05
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, Rbt,serследует принимать с умножением на коэффициент 1,2.

Таблица 6.8

ВидБетонРасчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25в30B35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность)Тяжелый, мелкозернистый и напрягающий2,12,84,56,07,58,511,514,517,019,522,025,027,530,033,037,041,044,047,5
Легкий1,52,12,84,56,07,58,511,514,517,019,522,0
Ячеистый0,951,31,62,23,14,66,07,07,7
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,260,370,480,560,660,750,901,051,151,301,401,501,601,701,801,902,102,152,20
Легкий0,200,260,370,480,560,660,750,901,051,151,301,40
Ячеистый0,090,120,140,180,240,280,390,440,46
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7.

4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2.

5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие.

Читайте также:  Прочность при растяжении и прочность при разрыве

Таблица 6.9

Вид сопротивленияБетонРасчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение
Вt 0,8Вt 1,2Вt 1,6Вt 2,0Вt 2,4Вt 2,8Вt 3,2
Растяжение осевое RbtТяжелый, мелкозернистый, напрягающий и легкий0,620,931,251,551,852,152,45

Источник

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Читайте также:  Предел прочности при растяжении пленки

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Источник

Cодержание:

1. Модули упругости основных строительных материалов.

2. Начальные модули упругости бетона.

3. Нормативные сопротивления бетона.

4. Расчетные сопротивления бетона.

5. Расчетные сопротивления бетона растяжению.

6. Нормативные сопротивления арматуры.

7. Расчетные сопротивления арматуры.

8. Нормативные и расчетные сопротивления стали.

9. Заменяемые марки стали.

10. Список использованной литературы.

Таблица 1. Модули упругости для основных строительных материалов.

(вернуться к списку таблиц)

МатериалМодуль упругости Е, МПа
Чугун белый, серый(1,15…1,60) • 105
»      ковкий1,55 • 105
Сталь углеродистая(2,0…2,1) • 105
»     легированная(2,1…2,2) • 105
Медь прокатная1,1 • 105
»    холоднотянутая1,3 • 103
»    литая0,84 • 105
 Бронза фосфористая катанная1,15 • 105
Бронза марганцевая катанная1,1 • 105
Бронза алюминиевая литая1,05 • 105
Латунь холоднотянутая(0,91…0,99) • 105
Латунь корабельная катанная1,0 • 105
Алюминий катанный0,69 • 105
Проволока алюминиевая тянутая0,7 • 105
Дюралюминий катанный0,71 • 105
Цинк катанный0,84 • 105
Свинец0,17 • 105
Лед0,1 • 105
Стекло0,56 • 105
Гранит0,49 • 105
Известь0,42 • 105
Мрамор0,56 • 105
Песчаник0,18 • 105
Каменная кладка из гранита(0,09…0,1) • 105
»    из кирпича(0,027…0,030) • 105
Бетон (см. таблицу 2) 
Древесина вдоль волокон(0,1…0,12) • 105
»    поперек волокон(0,005…0,01) • 105
Каучук0,00008 • 105
Текстолит(0,06…0,1) • 105
Гетинакс(0,1…0,17) • 105
Бакелит(2…3) • 103
Целлулоид(14,3…27,5) • 102

Примечание: 1. Для определения модуля упругости в кгс/см2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

(вернуться к списку таблиц)

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

модули упругости бетона по старому СНиПу

Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см2.

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

нормативные сопротивления бетона по новым нормам

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

расчетные значения сопротивления бетона сжатию

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

расчетные сопротивления бетона по старым нормам

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Читайте также:  Растяжение мышц брюшной полости симптомы

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

(вернуться к списку таблиц)

нормативные сопротивления арматуры

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

нормативные сопротивления арматуры по старым нормам

Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)

(вернуться к списку таблиц)

расчетные сопротивления для арматуры

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса В

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

таблица расчетных значений сопротивления стали

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

марки стали

Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.

Список использованной литературы:

1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»

2. СП 52-101-2003

3. СНиП II-23-81 (1990) «Стальные конструкции»

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.

21-11-2013: Badyoruy

Отличная подборка

03-10-2015: мухаммад

спасибо вам всеесть то что надо

26-04-2016: Василий

Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!

26-04-2016: Доктор Лом

Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.

26-04-2016: Владимир

Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно

26-04-2016: Доктор Лом

Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо «Модуль упругости Е, МПа» я бы прописал «Модуль упругости Е, МПа•10^-5», то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять «•10^5». Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.

05-08-2016: Александр

Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10…12.

05-08-2016: Доктор Лом

Вполне возможно, вот только и ГигаПаскали — не самая наглядная и простая для восприятия размерность.

Источник