Расчетное сопротивление осевому растяжению

Расчетное сопротивление осевому растяжению thumbnail

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Читайте также:  Памятка первая помощь при растяжении связок

Источник

Вернуться на страницу «Расчеты КМ и КЖ»

Сопротивление бетона на сжатие и растяжение

СП 63.13330.2012

6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:

Расчетное сопротивление осевому растяжению

Значения коэффициента надежности по бетону при сжатии γbпринимают равными:

для расчета по предельным состояниям первой группы:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 — для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы — в таблицах 6.8, 6.9, второй группы — в таблице 6.7.

Таблица 6.7

ВидБетонНормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser, МПа, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность) Rb,n, Rb,serТяжелый, мелкозернистый и напрягающий2,73,55,57,59,5111518,52225,529323639,54350576471
Легкий1,92,73,55,57,59,5111518,52225,529
Ячеистый1,41,92,43,34,66,99,010,511,5
Растяжение осевое Rbt,n и Rbt,serТяжелый, мелкозернистый и напрягающий0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80
Легкий0,290,390,550,700,851,001,101,351,551,751,952,10
Ячеистый0,220,260,310,410,550,630,891,001,05
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, Rbt,serследует принимать с умножением на коэффициент 1,2.

Таблица 6.8

ВидБетонРасчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25в30B35В40В45В50В55В60В70В80В90В100
Сжатие осевое (призменная прочность)Тяжелый, мелкозернистый и напрягающий2,12,84,56,07,58,511,514,517,019,522,025,027,530,033,037,041,044,047,5
Легкий1,52,12,84,56,07,58,511,514,517,019,522,0
Ячеистый0,951,31,62,23,14,66,07,07,7
Растяжение осевоеТяжелый, мелкозернистый и напрягающий0,260,370,480,560,660,750,901,051,151,301,401,501,601,701,801,902,102,152,20
Легкий0,200,260,370,480,560,660,750,901,051,151,301,40
Ячеистый0,090,120,140,180,240,280,390,440,46
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7.

4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2.

5 Для тяжелых бетонов классов В70 — В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В — класс бетона по прочности на сжатие.

Читайте также:  Растяжение колена когда можно заниматься

Таблица 6.9

Вид сопротивленияБетонРасчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение
Вt 0,8Вt 1,2Вt 1,6Вt 2,0Вt 2,4Вt 2,8Вt 3,2
Растяжение осевое RbtТяжелый, мелкозернистый, напрягающий и легкий0,620,931,251,551,852,152,45

Источник

Расчетное сопротивление бетонаДля обеспечения прочности и долговечности конструкций из бетона на стадии проектирования производятся расчёты, учитывающие основные характеристики материала. К ним относятся морозоустойчивость, водонепроницаемость, прочностные характеристики. Расчётное сопротивление бетона определяется в зависимости от нормативного сопротивления для этого класса материала.

Расчетные значения

Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.

При проектировании бетонных сооружений производят расчёты по двум группам предельных состояний. Первая группа — это полная непригодность к эксплуатации, включая разрушение. Вторая группа — это непригодность, которая определяется появлением трещин и недопустимых деформаций.

Проектирование бетонных сооруженийВ зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.

Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.

Таблица 1.

Таблица расчетов

Таблица 2.

Таблица для расчета бетона

Характеристики материала

Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.

Характеристика бетонаДля разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.

Неразрушающие методы проводятся прямо на бетонной поверхности, для них не требуются образцы. Исследование проводится следующими методами:

  1. частичное разрушение;
  2. ударный метод;
  3. ультразвуковое исследование.

Это способы местного воздействия, не наносящие большого вреда бетонной конструкции. Но они имеют меньшую точность, чем разрушающие методики. При сдаче здания в эксплуатацию обязательным является исследование методом разрушения проб.

Факторы прочности

Скорость химических процессов, протекающих в водных растворах, оказывает большое влияние на характеристики бетона. Причинами, способствующими увеличению прочности, можно считать следующие:

  1. Факторы прочности бетонаГлавным фактором является активность цемента. Чем он активнее, тем прочнее получится материал. Точным считается метод определения активности в лабораторных условиях. Существуют различные экспресс-технологии, способные дать ответ на вопрос о возможности использования материала. Для частного и неответственного строительства можно составить представление о качестве цемента путём осмотра. Хороший материал должен быть серо-зеленоватого цвета и хорошо сыпаться. Если присутствуют небольшие комки, то их легко раздавить пальцами. Если же есть большие твёрдые комья, то можно сделать вывод, что цемент потерял активность и не может быть использован в строительстве.
  2. Большое значение имеет также процентное соотношение цемента в растворе. Чем выше процент цемента, тем лучше будут прочностные характеристики бетона. Очень важным является соотношение воды и цемента в смеси. Бетон способен связывать только 15−20% воды, входящей в его состав. Это значительно меньше, чем количество воды, присутствующее в растворе. Из-за этого образуются поры, и прочность материала уменьшается.
  3. Применение в качестве наполнителей крупнофракционного материала хорошо сказывается на свойствах бетона.
  4. Время застывания тоже играет важную роль. Стопроцентные показатели предела прочности бетон приобретает только через 28 суток. Испытания бетонных образцов проводятся на третьи сутки, когда материал достигает 30% от своих максимальных прочностных характеристик.
  5. Условия внешней среды тоже влияют на процесс отвердевания бетона. Наилучшие условия отвердевания создаются при температуре 15−20 °C и высокой влажности. Увеличение прочности продолжается до тех пор, пока материал полностью не высохнет или не замёрзнет.

Долговечность и надёжность конструкций из бетона во многом зависит от качества проектирования. Необходимо учитывать все характеристики материалов, подбирать наиболее пригодные в существующих условиях и учитывать особенности работы материалов с разными видами нагрузок.

Материал хорошо работает на сжатие, а расчётное сопротивление растяжению у бетона на порядок хуже. Поэтому нужно избегать внецентренных нагрузок и изгибающих моментов.

Читайте также:  Нурофен от растяжений связок

Источник

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Расчетное сопротивление осевому растяжению

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Что такое расчетное сопротивление?

Специалисты получают показатели сопротивления строительного материала, разделяя нормативные сопротивления на коэффициенты. При определении прочности деталей конструкций к расчетному сопротивлению некоторых бетонных растворов иногда уменьшают либо увеличивают за счет умножения на определенные коэффициенты, учитывающие ряд факторов: многократные нагрузки, длительность воздействия нагрузок, способ изготовления изделия, его размеры и пр.

Вернуться к оглавлению

Как производить расчеты?

Каким образом нужно производить расчеты прочности конструкции, например, на ее сжатие? С этой целью строители используют специальные расчетные показатели. Для обеспечения достаточной устойчивости бетонных изделий при проведении расчетов, пользуются параметрами прочности стройматериала, которые чаще всего ниже параметров самих конструкций. Такие значения именуют расчетными. Они зависят непосредственно от нормативных (фактических) значений.

Вернуться к оглавлению

Нормативные показатели

Расчетное сопротивление осевому растяжению

Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.

Вернуться к оглавлению

Характеристики расчетного значения

Чтобы сделать надежные и долговечные конструкции, рассчитывают значения с запасом. Для получения этого значения строители прибегают к удельным сопротивлениям изделий: они разделяют их на коэффициент. Сопротивление стройматериала растяжению либо сжатию вычисляют при помощи формулы, которая выглядит следующим образом: R = Rn /g (g – коэффициент прочности). Чаще всего этот параметр равняется одному. От однородности материала зависит величина коэффициента. При этом выполнять соответствующие расчеты необязательно, поскольку получить необходимые параметры можно при помощи таблицы.

Вернуться к оглавлению

Другие характеристики

Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:

  1. Определение удельного электрического сопротивления бетонного раствора может понадобиться, если вы решили самостоятельно осуществить обогрев смеси при помощи электродов. И чем больше показатель, тем сильнее будет нагреваться цементный раствор.
  2. Влагопроницаемость смесей позволяет определить самое сильное давление жидкости, которому способен противостоять стройматериал. Иными словами, это значение показывает, может ли влага проникнуть сквозь бетон. Водонепроницаемыми марками считаются с W2 по W20. При этом цифры указывают на давление воды, которое способна выдержать конструкция.
  3. Воздухонепроницаемость бетонного состава будет зависеть от прочности изделия. Согласно государственному стандарту, сопротивление бетона проникновению воздуха составляет 3-130 с/см3.
  4. Морозоустойчивость позволяет конструкциям из бетона выдерживать многократное замерзание, оттаивание с сохранением свойств. На рынке строительных материалов представлены марки F50-F1000 (цифры означают число циклов, которые выдерживает строительный материал). Как показывает практика, в среднем морозостойкость изделий равна показателю F200.
  5. Теплопроводимость – важная характеристика изделий, от которой будет зависеть плотность строения. Материалы, содержащие больше пор, обладают меньшей теплопроводностью, поскольку воздух, который их заполняет, является прекрасным теплоизолятором. Лучше всего теплоизоляцию обеспечивают газоблоки или пеноблоки, в структуре которых есть множество пор.

Вернуться к оглавлению

Заключение

Прочность изделий способна отличаться в зависимости от компонентов, входящих в состав материала и их пропорций. Также это объясняется тем, что стройматериал представляет собой неоднородную смесь. Вне зависимости от способа перемешивания бетонного раствора, невозможно равномерно распределить компоненты. Поэтому при проведении работ необходимо учитывать расчетное сопротивление.

Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.

Источник