Расчет на прочность при растяжении или сжатии ступенчатого бруса

Геометрических характеристик плоских сечений

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Методические указания

к выполнению контрольной работы 1

по курсу «Сопротивление материалов» для студентов

специальностей 151001.65, 240801.65, 260601.65

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

ОБЩИЕ ПОЛОЖЕНИЯ

В элементах конструкций при действии внешних сил возникают внутренние силы упругости. При осевом растяжении (сжатии) стержня в его сечениях возникают только продольные силы N. Для их вычисления применяется метод сечений. Растягивающие продольные силы принято считать положительными, а сжимающие – отрицательными. Мерой внутренних сил является напряжение, оно характеризует интенсивность внутренних сил в точках сечения. При осевом растяжении (сжатии) стержня в его поперечных сечениях действуют только нормальные напряжения s. Знак s определяется знаком N. При растяжении стержня его длина увеличивается, а поперечные размеры уменьшаются. При сжатии – наоборот. В результате изменения длины стержня его сечения совершают линейные перемещения d вдоль продольной оси Z.

В задаче 1 проводится вычисление продольных усилий, нормальных напряжений в поперечных сечениях стержня, определение перемещений сечений стержня, а также построение соответствующих эпюр. Так как основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации, то также определяется коэффициент запаса прочности.

Стержни и стержневые системы, в которых внутренние усилия могут быть определены при помощи уравнений равновесия статики, называются статически определимыми. Стержни и системы, внутренние усилия в которых нельзя определить при помощи одних лишь уравнений статики, называются статически неопределимыми. Для их расчета необходимо рассмотреть систему в деформированном состоянии и составить дополнительные уравнения, связывающие перемещения элементов системы, Раскрытие статической неопределимости системы показано в задаче 2.

При центральном растяжении-сжатии и при чистом сдвиге прочность и жесткость стержня зависит от простейшей геометрической характеристики – площади поперечного сечения А. При других видах деформации, например, кручение и изгиб, прочность и жесткость стержня определяются не только площадью поперечного сечения стержня, но и формой сечения. Поэтому для расчета на прочность и жесткость в этих случаях приходится использовать более сложные геометрические характеристики сечений: статические моменты – Sx и Sy; моменты инерции: осевые Jx и Jy, центробежный Jxy, полярный Jp; моменты сопротивления: осевые Wx и Wy, полярный Wp. В задаче 3 определяются геометрические характеристики плоского сечения стержня, состоящего из двух прокатных профилей.

РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕСЖАТИЕ

Для ступенчатого стального бруса (рис. 1, а), выполненного из стали марки Ст. 3, имеющей предел текучести sТ = 240 МПа, модуль Юнга
E = 2×105 MПа, требуется:

1. Построить по длине бруса эпюры продольных сил N, нормальных напряжений s и перемещений поперечных сечений d.

2. Вычислить коэффициент запаса прочности бруса n.

Проведем ось z, совпадающую с осью бруса. Направление оси выбираем произвольно. Брус жестко защемлен верхним концом в опоре, в которой возникает опорная реакция R. Направление вектора реакции выбираем произвольно. Величину опорной реакции найдем из уравнения равновесия статики:

∑ FZ = 0; R – F1 + F2 = 0; R = F1 — F2 == 24 кН.

Разделим брус на силовые участки. Границами участков являются поперечные сечения бруса, проходящие через точки приложения внешних нагрузок и сечения, в которых изменяется площадь поперечного сечения бруса. Точки пересечения оси бруса и граничных сечений обозначим буквами B, C, D, K. Получим 3 участка бруса.

Используем метод сечений. На каждом участке проводим сечения I-I,
II-II, III-III. При этом одну из частей бруса (более сложную) мысленно отбрасываем и к плоскости сечения оставшейся части бруса прикладываем вектор продольной силы N в направлении внешней нормали к сечению. Рассматриваем равновесие оставшейся части бруса (рис. 2).

Уравнения равновесия статики на каждом участке запишутся:

на первом участке BC (рис. 2, а) ∑ FZ = 0; R – N1 = 0; N1 = R = 24 кН;

на втором участке CD (рис. 2, б) ∑ FZ = 0; R – N2 = 0; N2 = R = 24 кН;

на третьем участке DK (рис. 2, в) ∑ FZ = 0; N3 + F2 = 0; N3 = — F2 = — 42 кН.

Проведем вертикальную линию (рис. 1, б), параллельную оси y и отложим от нее в выбранном масштабе на каждом участке вдоль этой линии положительные значения продольной силы вправо, а отрицательные влево. Получим эпюру продольных сил N (рис. 1, б).

Определим нормальные напряжения σ, МПа, на каждом участке бруса по формуле

где N, Н – продольная сила на данном участке; А, м2 – площадь поперечного сечения данного участка.

На первом участке BC

На втором участке CD

На третьем участке DK

Проведем вертикальную линию (рис. 1, в), параллельную оси y и отложим в выбранном масштабе на каждом участке вдоль этой линии положительные значения нормальных напряжений вправо, а отрицательные влево. Получим эпюру нормальных напряжений σ.

Найдем удлинения ∆ℓ, м, участков бруса по формуле

,

где N, Н – продольная сила на данном участке; ℓ, м — длина данного участка; Е, МПа – модуль Юнга материала бруса на данном участке; А, см2 – площадь поперечного сечения данного участка.

На первом участке ВС

.

На втором участке CD

.

На третьем участке DK

.

Определим перемещения сечений бруса, проходящих через границы участков. Перемещение сечения, проходящего через точку В равно нулю, так как в жесткой заделке нет перемещений, т. е. δВ = 0.

Между точками B и C находится первый участок. Перемещение сечения C будет равно δC = δВ + ∆ℓ1 = 0 + 0,72 · 10-4 = 0,72 · 10-4 м.

Между точками C и D находится второй участок. Перемещение сечения D будет равно δD = δC + ∆ℓ2 = 0,72 · 10-4 + 0,8 · 10-4 = 1,52 · 10-4 м.

Между точками D и K находится третий участок. Перемещение сечения D будет равно δK = δD + ∆ℓ3 = 1,52 · 1,8 · 10-4 = -1,28 · 10-4 м.

Отложим в выбранном масштабе на граничных сечениях положительные значения перемещений сечений вправо, а отрицательные влево. Получим эпюру перемещений сечений бруса δ (рис. 1, г).

Найдем коэффициент запаса прочности бруса по формуле

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ

СТЕРЖНЕВОЙ СИСТЕМЫ

Абсолютно жесткий брус (рис. 3) закреплен с помощью шарнирно-неподвижной опоры и двух стержней и нагружен силой Q. Требуется:

1. найти усилия и напряжения в стержнях, выразив их через силу Q;

2. из расчета по допускаемым напряжениям найти допускаемую нагрузку [Q], приравняв большее из напряжений в двух стержнях допускаемому напряжению [σ] = 160 МПа;

3. из расчета по допускаемым нагрузкам найти предельную грузоподъемность системы и допускаемую нагрузку QДОП, если предел текучести σТ = 240 МПа и запас прочности n = 1,5;

4. сравнить величины [Q] и QДОП, полученные при расчете по допускаемым напряжениям и допускаемым нагрузкам.

 

 

Рис. 4 Рис. 5

(1)

Составлять уравнения и не имеет смысла, так как в них войдут не интересующие нас реакции опоры О (R3, R4). Таким образом, мы убеждаемся еще раз, что задача статически неопределима (в единственное уравнение статики (1) входят две неизвестные силы N1 и N2; нагрузку Q в этом уравнении считаем заданной).

Читайте также:  Растяжение и надрыв связок голеностопа лечение

Для составления дополнительного уравнения рассмотрим деформацию системы. Под действием нагрузки Q абсолютно жесткий брус CD, оставаясь прямым, повернется вокруг шарнира О и займет положение C1D1 (рис.6). Точка В опишет дугу, которую вследствие малости угла С1ОС заменим хордой ВВ1. Величина ВВ1 представляет собой удлинение второго стержня = ВВ1. Так как упругие деформации малы по сравнению с длинами стержней, то считают, что угол между абсолютно жестким брусом CD и ВК не изменился, то есть . Из рис. 3 следует, что a = 45°. При этом стержни 1 и 2 удлиняются соответственно на величины и .

 

Рис. 6

Удлинение стержня 1 () получаем на чертеже, опустив перпендикуляр ВМ из точки В на КВ1 (положение стержня 1 после деформации).

Из прямоугольного треугольника ВВ1М (рис.6) следует, что

(2)

На основании закона Гука (отрезок МВ1) и (отрезок ВВ1). При составлении этих выражений следует соблюдать соответствие направления нормальных сил N1 и N2 деформациям стержней 1 и 2. В данном случае стержни 1 и 2 растягиваются и силы N1 и N2 – растягивающие.

Условие совместности деформаций (2) перепишется так

(3)

Из рис. 3 видно, что — длина стержня 1; ℓ 2 = в – длина стержня 2. Тогда выражение (3) получает вид

(4)

Так как a = 45°, то получаем: N1 = N2. Решая совместно уравнения (1) и (4), получаем

N1 = N2 = 0,488 · Q.

После определения усилий N1 и N2 находим величины нормальных напряжений s1 и s2 в стержнях 1 и 2:

Определим допускаемую силу [Q]. из расчета по допускаемым напряжениям. Так как s2 > s1, то состояние второго стержня более опасно. Поэтому для определения допускаемой силы [Q]. следует приравнять напряжение во втором стержне s2 допускаемому напряжению [s] = 160 МПа.

(кН/м2)

244 [Q]. = 160 · 103 ; [Q]. = кН.

Допускаемая нагрузка [Q]. = 655,74 кН.

Определим допускаемую силу QДОП. из расчета по допускаемым нагрузкам. Напряжение во втором стержне оказалось больше, чем в первом, то есть s2 > s1. При увеличении силы Q напряжение во втором стержне достигнет предела текучести раньше, чем в первом. Когда это произойдет, напряжение во втором стержне не будет некоторое время увеличиваться, система станет как бы статически определимой, нагруженной силой Q и усилием во втором стержне

.

При дальнейшем увеличении силы напряжение в первом стержне также достигнет предела текучести. Усилие в этом стержне будет равно

Запишем уравнение равновесия статики для такого состояния системы

где sТ = 240 МПа – предел текучести материала.

Из этого уравнения находим предельную грузоподъемность системы

кН.

Допускаемая нагрузка QДОП определится так

кН,

где n = 1,5 – коэффициент запаса прочности.

Сравнивая полученные результаты, видим, что допускаемая нагрузка QДОП, определенная из расчета по допускаемым нагрузкам, больше допускаемой нагрузки [Q], из расчета по допускаемым напряжениям в

раза.

Способ расчета по допускаемым нагрузкам для статически неопределимых систем позволяет вскрыть дополнительные резервы прочности, повысить несущую способность системы и указывает на возможность более экономного расходования материала.

Рассмотрим пример на определение геометрических характеристик плоского сечения. Сечение (рис. 7) состоит из швеллера № 30 и равнополочного уголка 100х100х10. Требуется:

1. Определить положение центра тяжести поперечного сечения.

2. Найти осевые и центробежный моменты инерции относительно случайных осей (XC и YC), проходящих через центр тяжести.

3. Определить положение главных централь­ных осей u и v.

4. Найти моменты инерции относительно главных центральных осей.

5. Вычертить сечение в масштабе 1 : 2 и указать на нем все размеры в числах и все оси.

Выпишем из таблиц сортамента все данные, необходимые для расчёта, и схематично зарисуем профили элементов сечения (рис. 8).

Швеллер № 30 по ГОСТ 8240-89. Площадь А = 40,50 см2. Моменты инерции относительно собственных центральных осей: Jх = 5810,0 см4,
Jу = 387,0 см4, Jху=0. Так как одна из осей является осью симметрии, то оси будут главными и центробежный момент относительно них равен нулю. Центр тяжести расположен на расстоянии z0 = 2,52 см от стенки швеллера.

Уголок равнополочный 100х100х10 по ГОСТ 8509-86. Площадь
А = 19,24 см2. Моменты инерции Jх = Jу = 178,95 см4, см4, см4. Расстояние от центра тяжести уголка до наружных граней полок z0 = 2,83 см. Угол между осями Х и Х0 равен 45º. Для дальнейшего расчёта понадобится величина центробежного момента инерции уголка Jху. Её можно вычислить по формуле

Так как для равнополочного уголка 45º, то sin 2 = sin 90º = 1.

Знак центробежного момента инерции уголка выбирается в соответствии с рис. 9. При положениях уголка (рис.9, а) и (рис.9, б) центробежный момент инерции отрицательный, а при положениях уголка (рис.9, в) и (рис.9, г) центробежный момент инерции положительный.

Прежде чем приступить к дальнейшему расчёту, необходимо с соблюдением масштаба (в задании задачи – это масштаб 1:2) начертить сечение,
(рис.Так как сечение состоит из 2 элементов, пронумерованных цифрами I, II, необходимо ввести соответствующие индексы в обозначении центров тяжестей (01, 02), центральных осей x1, y1, x2, y2 и соответствующих моментов инерции. Из рис. 10 видно, что центральные оси швеллера x1 и y1 соответствуют осям y и x швеллера на рис. 8. Соответственно поменяются местами осевые моменты инерции швеллера.

Определим координаты центра тяжести сечения относительно вспомогательных осей x и y (рис. 10). Оси удобно провести так, чтобы все сечение располагалось в первом квадрате. Найдём координаты центров тяжести элементов в системе осей x и y. Из рис. 10 видно, что О1(15;2,52), О2(22,17;3,48). Координаты центра тяжести сечения находятся по формулам:

;

.

В масштабе наносим точку С с координатами Хс=17,31 и Ус=2,82 см на расчётную схему и проводим через т. С оси xс и yс, параллельные осям x и y. Находим координаты центров тяжестей О1 и О2 элементов в полученной системе координат xсСyс.

Пользуясь формулами связи между координатами точки относительно параллельных осей координат, получим:

см;

см;

см;

см.

Для проверки правильности нахождения координат центра тяжести сечения найдём статистические моменты всего сечения относительно центральных осей xс и yс. Известно, что статические моменты сечения относительно центральных осей должны быть равны нулю:

см3;

см3.

Близкие к нулю значения Sx и Sy показывают, что координаты центра тяжести сечения найдены правильно. Отличие их от нуля – накопленная погрешность вычисления.

Определим осевые и центробежный моменты инерции сечения относительно произвольных центральных осей xсyс. Используем формулы зависимостей между моментами инерции относительно параллельных осей:

;

;.

Определим направление главных центральных осей u и v. Тангенс угла наклона главных центральных осей u и v к произвольным центральным осям xс и yс определяется по формуле

Читайте также:  Для растяжения крайней плоти

.

По найденному значению тангенса с помощью таблиц или калькулятора находим значение угла , откуда . Положительный угол откладывается от оси xс против хода часовой стрелки и определяет положение одной из главных центральных осей – u. Вторая главная центральная ось – v перпендикулярна оси u.

Покажем на расчётной схеме (рис. 10) положение главных центральных осей u и v.

Для проверки правильности определения положения главных центральных осей найдём центробежный момент инерции относительно этих осей u и v по формуле:

.

Центробежный момент инерции относительно главных осей должен быть равным нулю. Полученная близкая к нулю величина JUV показывает, что положение главных осей определено достаточно точно.

Определим моменты инерции относительно главных осей. Величины главных моментов инерции находятся по формуле:

;

Jmax = 6660,90 см4; Jmin = 511,86 см4.

Максимальный момент инерции Jmax будет относительно той главной центральной оси, которая ближе расположена к произвольной центральной оси, момент инерции относительно которой имеет наибольшее значение, то есть в нашем случае это есть ось v – она ближе всего к оси yс с максимальным . Таким образом, получаем:

Jv = Jmax = 6660,90 см4; Ju = Jmin = 511,86 см4.

Для контроля определения Jv и Ju проверим, выполняется ли равенство:

Jv + Ju; 318,01 + 6654,74 = 7172,75 см4 ;

Jv + Ju = 511,86 + 6660,90 = 7172,76 см4.

С той же целью найдём центробежный момент инерции по известным главным центральным моментам инерции Jv и Ju и углу по формуле

.

Незначительное отличие от ранее найденного значения =194,47 см4 свидетельствует о достаточной точности определения положения главных центральных осей и величин главных центральных моментов инерции.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Какие случаи деформации бруса называются центральным растяжением или сжатием?

2. Как вычисляется значение продольной силы в произвольном поперечном сечении бруса?

3. Как вычисляются напряжения при центральным растяжении или
сжатии?

4. Как формулируется закон Гука? Что называется жесткостью сечения при растяжении (сжатии)?

5. Что называется модулем Юнга Е? Какова его размерность?

6. Что называется допускаемым напряжением? Как оно выбирается для пластичных и хрупких материалов?

7. Какие конструкции являются статически определимыми, а какие – статически неопределимыми?

8. Каким образом проводится расчет статически неопределимых конструкций?

9. Чем отличается расчет по допускаемым напряжениям от расчета по допускаемым нагрузкам?

10. Как находятся координаты центра тяжести сечения?

11. Какие оси называются главными?

12. Для каких сечений можно без вычислений установить положение главных осей?

13. Чему равен центробежный момент инерции относительно главных осей?

14. Какие оси называются центральными?

15. Относительно каких центральных осей осевые моменты инерции принимают наибольшее и наименьшее значения?

ЛИТЕРАТУРА

1. Александров материалов: учебник для вузов / , , ; под ред. . – 5-е изд., стер. – М.: Высш. шк., 2007. – 560 с.

2. Вольмир материалов / , ; под ред. . – М.: Высш. шк., 2007 . – 412 с.

3. Гильман материалов: учеб. пособие / . – Саратов: СГТУ, 2003. – 108 с.

4. Сопротивление материалов: учеб. пособие / , , и др.; под ред. . – 3-е изд., перераб. и доп. – М.: Высшая школа, 2007. – 488 с.

5. Феодосьев материалов: учебник / . – 13-е изд., стер. – М.: Изд-во МГТУ им. , 2005. – 592 с.

6. ГОСТ 8509-86. Сталь прокатная угловая равнополочная. Сортамент. – М.: Изд-во стандартов, 1987. – 6 с.

7. ГОСТ 8240-89. Сталь горячекатанная. Швеллеры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

8. ГОСТ 8239-89. Сталь горячекаменная. Двутавры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.

Методические указания

к выполнению контрольной работы

Составили: ГИЛЬМАН Александр Абрамович

ПОПОВА Наталья Евгеньевна

Рецензент

Корректор

Подписано в печать Формат 60х84 1/16

Бум. офсет. Усл. печ. л. Уч.-изд. л

Тираж 100 экз. Заказ Бесплатно

Саратовский государственный технический университет

Саратов, Политехническая ул., 77

Отпечатано в РИЦ СГТУ. Саратов, Политехническая ул., 77

Источник

Раздел 1 Расчет статической прочности по допускаемым напряжениям

Глава 10 Расчет на прочность

Как и всякое сложное инженерное сооружение, конструкция летательных аппаратов для расчета на прочность мысленно расчленяется на отдельные узлы и отсеки, к которым прикладываются действующие на них в данный момент расчетные нагрузки и реактивные усилия, приходящие со стороны смежных мысленно отброшенных отсеков. В пределах каждого такого отсека или узла все действующие аэродинамические и инерционные нагрузки принимаются как статические. Таким образом, проверяются расчетным путем все элементы конструкции аппарата, переходя от одного момента нагружения к другому, т.е. по всем расчетным случаям. Самым ответственным моментом расчета является выбор и обоснование величины коэффициентов безопасности. Под коэффициентом безопасности f принято понимать число, больше единицы, на которое следует умножить величину эксплуатационной нагрузки (или перегрузки). Для самолетов значения коэффициентов безопасности устанавливаются «Авиационными правилами». После установления коэффициента безопасности все расчеты на прочность проводят на так называемые расчетные нагрузки (перегрузки), равные:

Pр=f×Pэ,

nр=f×nэ, где

Pр, nр— расчетные значения нагрузок (перегрузок),

Pэ, nэ— эксплуатационные значения нагрузок (перегрузок),

f— коэффициент безопасности.

В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности, которые к ней предъявляются.

Наиболее распространенным методом расчета на прочность является расчет по допускаемым напряжениям. В основу этого метода положено предположение, что критерием прочности является напряженное состояние в точке. Последовательность расчета следующая. На основе анализа напряженного состояния конструкции выделяется точка, в которой возникает наибольшее напряжение. Найденная величина напряжения сравнивается с допускаемой величиной для материала конструкции. Из сопоставления расчетных напряжений и допускаемых напряжений делается заключение о прочности.

В ряде случаев достижение в точке максимальных напряжений предельных значений не является опасным для всей конструкции в целом. Такая ситуация возникает при неравномерном распределении напряжений по сечению, например при изгибе или кручении, а также для составных статически неопределимых конструкций. Если конструкция изготовлена из пластического материала, то достижение, в какой либо точке, предела текучести не приводит к потере её несущей способности. В связи с этим возникает необходимость к оценке прочности конструкции по её предельному состоянию. Под предельным состоянием конструкции понимают такое её состояние, при котором она теряет способность сопротивляться внешним воздействиям, или перестает удовлетворять предъявляемым к ней эксплуатационным требованиям. Различают три вида предельных состояний.

1. Предельное состояние по несущей способности. При достижении этого состояния, например, в результате исчерпания статической прочности, потере устойчивости или достижении длины усталостной трещины предельной величины, конструкция теряет возможность сопротивляться внешним воздействиям.

2. Предельное состояние по развитию чрезмерных деформаций. В этом случае от действия статических или динамических нагрузок или от действия температуры при сохранении статической прочности и устойчивости появляются такие остаточные изменения или колебания, при которых конструкция перестает удовлетворять предъявляемым к ней требованиям.

3. Предельное состояние по образованию и развитию трещин. Такое состояние возникает, когда в конструкции, сохраняющей статическую прочность, появляются трещины таких размеров, что дальнейшая эксплуатация становится невозможной, например, вследствие потери герметичности.

Читайте также:  Растяжение связок голеностопа рентген

На практике наиболее часто встречаются два случая расчета статической прочности по допускаемым напряжениям.

Проектировочный расчет. В этом случае по известным нагрузкам и для выбранного материала требуется определить необходимые размеры поперечного сечения элемента конструкции, обеспечивающие его надежную работу. В основе этого расчета для одноосного напряженного состояния лежит условие прочности:

или ,

выражающее тот факт, что наибольшее напряжение (нормальное smax или касательное τmax) действующее в сечении элемента конструкции не должно превышать соответствующего допускаемого напряжения [smax] ([τmax]). Допускаемое напряжение определяют как частное от деления предельных напряжений sпред (τпред) на запас прочности ns ():

, или

В качестве предельных напряжений принимают предел прочности sв (τв). для хрупких материалов и предел текучести sт (τт) для пластических материалов.

При установлении запаса прочности ns () учитывают разброс механических свойств материала, отступления в геометрии элементов конструкции, хотя бы в пределах допусков.

2. Проверочный расчет. Проводят в случае, когда заданы размеры элемента конструкции и его материал. Требуется выяснить, может ли заданный элемент выдержать, не разрушаясь, заданную нагрузку. В этом случае определяют избытки прочности hs (hτ) как отношение допускаемых напряжений к максимальным действующим напряжениям:

или .

Аналогично проводят расчет на жесткость, только вместо условия прочности записывают условие жесткости, ограничивающее величину деформаций (или перемещений). Однако даже в том случае, когда выполнен расчет на жесткость, всегда необходимо проводить проверочный расчет на прочность и, если он дает отрицательный результат, то следует принять размеры, полученные из расчета на прочность.

Считается, что стержневая система или ступенчатый брус разрушаться, если максимальное нормальное напряжение, возникающее в них, достигнет предельного напряжения материала, из которого они выполнены.

Условие разрушения имеет вид:

Наибольшее действующее напряжение определяют для наиболее напряженного стержня системы или сечения бруса по формуле:

s = N/F, где:

N— нормальное усилие,

F— площадь поперечного сечения.

В качестве предельных напряжений sпред примем те напряжения, при достижении которых в материале появляются признаки нарушения прочности: при достижении предела текучести sт‑ заметные остаточные деформации, при достижении предела прочности — появление излома. Таким образом, для пластичных материалов предельным напряжением будет предел текучести: sтр ‑ предел текучести при растяжении, или sтс ‑ предел текучести при сжатии. Для хрупких материалов предельным напряжением будет предел прочности: sвр ‑ предел прочности при растяжении, или sвс ‑ предел прочности при сжатии.

Следовательно, можно записать:

Стержневая система или ступенчатый брус считаются прочными, если максимальные расчетные напряжения, возникающие в них, будут меньше допускаемых напряжений. Это означает, что для стержневой системы или ступенчатого бруса, обладающих достаточной прочностью, должно выполняться условие прочности:

, где:

smax — наибольшее действующее напряжение,

[s]-допускаемое напряжение.

Допускаемое напряжение [s] определим как то максимальное напряжение, которое можно допустить при работе и при котором будет обеспечен требуемый запас прочности:

[s]=sпред/ns, где:

sпред— предельное напряжение,

ns — запас прочности.

Если возникает необходимость соблюдения требования необходимой жесткости, т.е. способности воспринимать заданные внешние нагрузки, не деформируясь выше установленных норм, то необходимо удовлетворить условию жесткости, которое требует, чтобы максимальное перемещение узла dmax стержневой системы или сечения ступенчатого бруса не превышало допускаемого перемещения [d]:

Если получены два значения искомого размера (один из условия прочности, другой из условия жесткости), тогда в качестве окончательного принимают тот, который удовлетворяет обоим условиям, т.е. наибольший.

Пример 10.1

Подобрать сечение стержней фермы крепления двигателя (рис. 10.1) для случая нагружения двигателя силой тяги Pэx и массовыми силами соответствующими случаю D. Вес двигателя Gдв = 10 кН; тяга Pэx=30 кН; перегрузка nD=-2,5; коэффициент безопасности f=1,5. Стержни фермы выполнены из тонкостенных стальных труб с отношением внутреннего диаметра к наружному d/D=0,9. Материал труб 30ХГСА. Предел текучести на растяжение s0,2=1162 МПа, предел текучести на сжатие s0,2 сж=1081 МПа.

Рисунок 10.1

Решение.

1. Определим расчетные нагрузки путем учета коэффициента безопасности и перегрузки в заданном случае нагружения.

Px= f Pэx=1,5´30= 45 кН.

= f nD Gдв = 1,5´(-2,5) ´10= -37,5 кН.

2. Двигатель крепится с помощью шести стержней. Так как для пространственной системы сил можно составить шесть уравнений равновесия, то система является статически определимой. Для определения усилий в стержнях удалим опоры, и их действие заменим неизвестными усилиями в стержнях (рис. 10.2).

Рисунок 10.2

В силу симметрии можно записать:

N1-2= N1`-2` N1-3= N1`-3`

Для определения усилий в стержнях составим уравнения равновесия:

Решая систему уравнений, получим усилия в стержнях:

Из рассмотрения схемы нагружения определим:

,

,

.

Вычислим численные значения усилий в стержнях:

3. Определим напряжения в стержнях:

4. Диметры стержней определим из условий:

, откуда:

, d1-2=0,9´ 15=13,5 мм

, d1-3=0,9´ 12,8=11,5 мм

, d4-5=0,9´ 9=8 мм

Пример 10.2

Для ступенчатого стального бруса (рис. 10.3а) определить реакции в заделках, построить эпюры продольных сил N, нормальных напряжений s, относительных деформаций e, продольных перемещений Dl. Определить опасное сечение и подобрать необходимую площадь F из условия прочности на растяжение или сжатие.

Задано: a =0,5 м, q=200 кН/м, E = 2,1´105 МПа. Допускаемое напряжение на растяжение [s]р = 160 МПа, на сжатие [s]c = 60 МПа.

Рисунок 10.3

Решение.

1.Отбросим левую и правую заделку и заменим их действие неизвестными силами Х1 и Х4. Нумеруем характерные сечения (рис. 10.3б).

2. Запишем уравнение равновесия:

SX=-X1+q2a-2qa+X4=0, или:

X4–X1=0 (1)

Задача один раз статически неопределима, так число уравнений равновесия на единицу меньше числа неизвестных.

3.Запишем выражение нормальных сил N на каждом участке, последовательно отсекая сечения от начала участка, начиная от левой заделки.

N1-2(x)=X1-qx,

N2-3(x)=X1–q2a,

N3-4(x)=X1–q2a+2qa=X1

4. Учитывая, что смещение заделок относительно друг друга равно нулю, запишем уравнение совместимости деформаций:

Dl1-4=0, или:

Dl1-2+Dl2-3+Dl3-4=0

По закону Гука удлинение каждого участка стержня имеет вид:

Dl1-2= =(a/EF)(X1–qa)

Dl2-3=((X1–2qa)a)/(EF)

Dl3-4=(X1a)/(3EF)

Следовательно, уравнение совместимости примет вид:

(a/EF)(X1–qa)+((X1–2qa)a)/(EF)+(X1a)/(3EF)=0, или

7/3X1–3qa=0 (2)

Решая уравнения 1 и 2 совместно, получим:

X1=9/7qa

X4=9/7qa

5.Запишем выражения нормальных сил, подставив значение Х1:

N1-2(x)=9/7qa-qx, N1(0)=9/7qa, N2(2a)=-5/7qa

N2-3(x)=9/7qa–q2a=-5/7qa,

N3-4(x)=9/7qa

Строим эпюру N (рис. 10.3в).

6. Запишем выражения нормальных напряжений:

s1-2(x)=(9/7qa–qx)/2F, s1(0)=(9/7qa)/2F, s2(2a)=(-5/7qa)/2F

s2-3(x)=(-5/7qa)/F,

s3-4(x)=(9/7qa)3F

Строим эпюру s (рис. 10.3г).

7.Запишем выражения относительных деформаций:

e1-2(x)=(9/7qa–qx)/2EF, e1(0)=(9/7qa)/2EF, e2(2a)=(-5/7qa)/2EF

e2-3(x)=(-5/7qa)/EF,

e3-4(x)=(9/7qa)3EF

Строим эпюру e (рис. 10.3д).

8. Запишем выражения перемещений сечений:

Dl1-2(x)= =(1/2EF)(9/7qax–qx2/2);

Dl1(0)=0; Dl2(2a)=2/7(qa2/EF)

Dl2-3(x)=2/7(qa2/EF)+ =2/7(qa2/EF)–5/7(qax/EF);

Dl2(0)=2/7(qa2/EF); Dl3(a)=-3/7(qa2/EF)

Dl3-4(x)=-3/7(qa2/EF)+ =-3/7(qa2/EF)+3/7(qax/EF)

Dl3(0)=-3/7(qa2/EF); Dl4(a)=0

Строим эпюру Dl (рис. 10.3е).

Вычислим значение экстремума на эпюре Dl:

e1-2(x)=(9/7qa–qxmax)/2EF=0, откуда

xmax=9/7a, тогда

Dl1-2(xmax)=(1/2EF)(9/7qa 9/7a–q(9/7a)2/2)=81/196(qa2/EF)

9. Запишем условия прочности:

9/14(qa/F)<=[s]р

-5/7(qa/F)>=[s]c

Определяем потребную площадь сечения:

F>=9/14(qa/[s]р)=9/14(200 103 0,5/160 106)=4 10-4м2

F>=-5/7(qa/[s]с)=-5/7(200 103 0,5/(-60 106))=11,9 10-4м2

Таким образом, опасным является участок 2-3.

Выбираем наибольшее значение F = 11,9 10-4м2.

Источник