Работа стали при одноосном растяжении

Работа стали при одноосном растяжении thumbnail

6.1. Работа стали при одноосном растяжении

Из курса «Сопротивления материалов» известно, если мы будем растягивать плоский образец из стали (рис. 6.1), то увидим, что сначала удлинение образца будут происходить пропорционально возрастанию нагрузки. На диаграмме это представлено отрезком 0-1. Далее, при возрастании нагрузки удлинение быстро нарастает – участок 1-2, а затем наблюдается только удлинение, без увеличения нагрузки – участок 2-3. Участок, где наблюдается рост деформаций, без увеличения нагрузки, называется площадкой текучести.

После образования площадки текучести при увеличении силы Р, металл снова начинает сопротивляться дальнейшему растяжению. Точка 4 соответствует наибольшей величине напряжений.

После момента, когда нагрузка достигает величины, соответствующей т.4, начинает образовываться местное сужение поперечного сечения, образуется, так называемая «шейка», которая постоянно утончается и, наконец, в точке 5 происходит разрыв образца.

Рассмотрим, что происходит со структурой стали в различные периоды работы на растяжение.

Более точно любая деформация происходит из-за изменения расстояний между атомами и искажений атомной решетки (рис. 3.1), но упрощенно можно рассмотреть процессы, происходящие в зернах феррита.

Как было отмечено выше, сталь состоит из зерен феррита в оболочке и с прослойками перлита (см. п. 3.2, рис.3.2). Феррит и перлит значительно различаются по прочности, упругости и пластичности, что и определяет работу стали под нагрузкой.

Рассматриваемую диаграмму работы стали удобнее изображать (рис. 6.2) в координатах:

  • по оси ординат – напряжение;
  • по оси абсцисс – относительное удлинение 

Упругая работа стали  – участок 0-1 (рис.6.2). При нагружении стального образца в пределах упругости, внутри зерен феррита происходят сдвиговые деформации, но упругость перлитных прослоек не дает зерну феррита свободно деформироваться (рис. 6.3, б). В упругой стадии работы деформации удлинения происходят только в результате упруго-возвратимого деформирования т.е.после снятия нагрузки деформации исчезают, а размеры образца возвращаются к первоначальным (рис. 6.3, в, г).

Упруго-возвратимые деформации происходят до величины напряжений, называемых пределом пропорциональности – ?пц (т.1. рис. 6.2 и 6.4). Остаточных деформаций в зоне упругой работы стали нет.

На рис. 6.4 стрелками показано изменение напряжений при нагрузке до предела пропорциональности (стрелка вверх) и разгрузке (стрелка вниз).

Для малоуглеродистой стали предел пропорциональности примерно равен ?пц = 20 кН/см2. При напряжениях равных пределу пропорциональности величина временных (упругих) деформаций равна примерно ?упр= 0,02%  (рис. 6.2).

В упругой области модуль упругости постоянен и равен Е = 20600 кН/см2 или 2,06х105 МПа.

Упруго-пластическая работа стали – участок 1-2 (рис. 6.2 и 6.5). При дальнейшем увеличении нагрузки пропорциональность между напряжениями и деформациями нарушается. В отдельных зернах феррита, в силу начальных несовершенств (дислокаций) или при больших размерах зерна, происходят большие сдвиги, которым уже не могут препятствовать оболочки и прослойки перлита. Деформации начинают расти быстрее, чем напряжения Модуль упругости на участке 1-2 постоянно меняется и уменьшается.

После снятия нагрузки (рис. 6.5 –стрелка вниз) упругая часть деформаций ?упр исчезает, а образовавшаяся необратимая пластическая деформация остается, образуя остаточные деформации ?ост. Последующее нагружение (рис. 6.5 — стрелка вверх) начинается с деформации ?ост. и график нагружения проходит параллельно отрезку 0-1, соответствующего упругой работе стали, нона расстоянии  ?ост  от него.

Площадка текучести – участок 2-3 (рис. 6.2). Последующее увеличение напряжений приводит к образованию сдвиговых деформаций, происходящих в большом количестве зерен феррита. Перлит не может препятствовать развитию этих сдвигов. Сдвиговые деформации, происходящие в зернах феррита, приводят к образованию линий сдвига (рис.5й,а) и образованию больших необратимых деформаций (рис.5й,б).

Металл в этот промежуток времени как бы течет, т.е. растут деформации без увеличения нагрузки. Во время течения металла на поверхности его образуются линии взаимного перемещения частиц металла — линии Людерса-Чернова.

Металл в этот промежуток времени как бы течет, т.е. развитие больших деформаций происходит без увеличения нагрузки. Начало площадки текучести ? 0,2%.

Протяженность площадки текучести составляет примерно 1,5-2%. Здесь также наблюдаются остаточные деформации. Причем упругая часть деформаций возвращается, а необратимая пластическая деформация остается, образуя остаточные деформации. Напряжение, соответствующее площадке текучести, называют – пределом текучести – ?т.

Образование площадки текучести присуще только сталям, содержащим около 0,1-0,3 % углерода. При меньшем содержании углерода получается недостаточно зерен перлита для сдерживания сдвиговых деформаций (рис.6й кривая 1).При большом содержании углерода или при большом содержании легирующих добавок зерен перлита получается много. Они полностью блокируют зерна феррита и не дают возможности развиваться по ним сдвигам (рис.6й кривая 2). Эти стали не имеют площадки текучести. Условный предел текучести у таких сталей устанавливают по остаточному удлинению 0,2 %.

В сталях повышенной и высокой прочности наличие легирующих элементов приводит к повышению прочности. Дело в том, что карбиды и нитриды легирующих элементов располагаются в теле зерен феррита и по их стыкам. Они создают дополнительное сопротивление сдвигу в зернах феррита и сдвигу всей структуры.

Читайте также:  Если растяжение связки на стопе что делать

При этом повышается как предел текучести, так и временное сопротивление.

Зона самоупрочнения – участок 3-4. При дальнейшем нагружении развитие деформаций затрудняется более прочными и жесткими прослойками перлита. И для развития общих сдвиговых деформаций в металле необходимо преодолеть сопротивление перлита. Для этого необходимо увеличение напряжений.

Зону работы металла, где происходит вновь сопротивление внешним воздействиям, называют зоной самоупрочнения. В этой зоне металл работает как упруго-пластический. Точка 4 соответствует наибольшему напряжению, вызванному наибольшей нагрузкой. Его называют предел прочности или временное сопротивление разрушающим воздействиям – ?вр. Временное сопротивление малоуглеродистой стали возникает при деформации 15-20%.

В дальнейшем возникает местное сужение поперечного сечения, образуется так называемая «шейка» и наступает разрыв образца (линия 5-6 диаграммы).

Основные показатели, характеризующие свойства стали

  1. Предел текучести – ?т, – характеризующий начало развития больших пластических деформаций.
  2. Временное сопротивление – предел прочности – ?вр,– характеризующее предельную нагрузку, воспринимаемую материалом.
  3. Относительное удлинение – характеризующее пластические свойства материала.

Эти показатели обязательно приводят в сертификатах или в сопровождающей документации на каждую партию стали.

В целях упрощения расчетов конструкций без большой погрешности диаграмму работы сталей, имеющих площадку текучести, заменяют идеализированной диаграммой работы упругопластического материала. При этом принимают, что материал работает совершенно упруго до предела текучести и совершенно пластично после него (диаграмма Прандтля) (рис.8й)

Источник

Работу стали при одноосном напряжении можно проследить по испытанию образца на растяжения (рис.1.4.).

В стадии 1 до предела пропорциональности Ơр связь между напряжением и деформациями подчиняется закону Гука (Ơ=Еε) – это стадия упругой работы.

Деформации происходят за счет упруго возвратных искажений кристаллической решетки и исчезают после снятия нагрузки.

 
 

Рис.1.4. Диаграмма растяжения стали и образование шейки

При дальнейшем увеличении нагрузки (стадия 2) появляются отдельные сдвиги в зернах феррита, дислокации начинают скапливаться около границ зерен; прямая пропорциональность между напряжениями и деформациями нарушается (участок упруго пластической работы между Ơр и Ơy). Последующее увеличение напряжений приводит к интенсивному движению дислокаций и увеличению их плотности, развитию линий сдвига в зернах феррита; деформации растут при постоянной нагрузке. На диаграмме появляется площадка текучести (стадия 3).

Протяженность площадки текучести низкоуглеродистых и некоторых низколегированных сталей составляет 1,5 – 2,5%.

Развитие деформаций происходит в результате упругого деформирования и необратимых пластических сдвигов. При снятии нагрузки упругая часть деформаций исчезает, а необратимая остается, приводя к остаточным деформациям (линия разгрузки идет параллельно упругой части линии нагрузки).

Дальнейшее развитие деформации сдерживается у границ зерен. Линии сдвига искривляются, движение дислокации затрудняется, и рост деформаций возможен только при увеличении нагрузки (стадия 4 – самоупрочнение), материал работает как упругопластический.

При напряжениях, близких к временному сопротивлению (Ơu) продольные и поперечные деформации локализуются в наиболее слабом месте, и в образце образуется шейка. Площадь сечения шейки интенсивно уменьшается, напряжения в месте сужения растут, поэтому, несмотря на то, что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного

Сцепления и происходит разрыв.

Площадка текучести свойственна сталям с содержанием углерода 0,1-0,3%.

При работе конструкции в упругопластической области диаграмму работы стали Ơ — ε можно упростить в сторону некоторого запаса и заменить идеализированной диаграммой упругопластического тела, совершенно упругого до предела текучести и совершенно пластичного после него (диаграмма Прандтля, рис.1.5.).

 
 

Рис.1.5. Идеализированная диаграмма работы стали

При сжатии коротких образцов, которые не могут потерять устойчивость, сталь ведет себя также как и при растяжении, т.е. предел пропорциональности, предел текучести и модуль упругости совпадают.

Однако разрушить при сжатии короткие образцы, изготовленные из пластической стали, и определить временное сопротивление не представляется возможным, поскольку образец сжимается и в конечном результате расплющивается. Высокопрочные стали, с пониженной пластичностью, могут разрушаться по наклонному сечению от среза.

Читайте также:  Что можно делать при растяжение шеи

Так как в упругой и упругопластической стадиях работы сталь ведет себя при растяжении и сжатии одинаково, то соответствующие характеристики принимаются также одинаковыми.

Повышенная несущая способность при сжатии некоторых образцов в области само упрочнения используется при работе стали на смятие.

При работе материала в упругой стадии повторное загружение не отражается на работе, поскольку упругие деформации обратимы.

При повторном нагружении металла в упругопластической области возникает наклеп. Увеличивается область упругой работы, а пластичность падает. Сталь становится более хрупкой.

Многократное повторное нагружение может привести к разрушению при меньших напряжениях, чем временное сопротивление и даже предел текучести. Это явление называется усталостью металла, а разрушение – усталостным.

Способность металла сопротивляться усталостному разрушению называется выносливостью, а напряжения, при которых происходит разрушение – вибрационной прочностью Ơвб.

Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что приводит к рыхлению металла в этом месте и образованию трещин, которые развиваясь, приводят к разрыву. При каждом нагружении деформации в поврежденном месте нарастают. Линии разгрузки не совпадают с линиями нагрузки, образуя петли гистерезиса (см. рис.1.2,в). Площадь петли характеризует энергию, затраченную при каждом цикле нагрузки на образование новых несовершенств в атомной структуре и дислокаций там, где образуются трещины, металл как бы перетирается, образуя гладкие истертые поверхности, затем трещина быстро развивается и происходит разрыв.

Вибрационная прочность зависит от числа циклов загружения (рис.1.6.) и вида загружения.

При большом числе циклов кривая вибрационной прочности (кривая Вел Лера) асимметрически приближается к некоторому пределу, называемому пределом выносливости (усталости). Обычно проводят 2х106 циклов нагружения, чтобы определить выносливость, так как меньшее количество циклов мало отличается от предела усталости.

Алюминиевые сплавы не имеют предела усталости, и их вибрационная прочность при увеличении числа циклов постоянно снижается (см. рис.1.6).

Большое влияние на усталостную прочность оказывает концентрация напряжений. Так при круглом отверстии (кривая 3, рис. 1.7) предел упругости снижается в 1,4 раза, а при остром концентраторе (кривая 7) около начала флангового шва — в 3,5 раза.

Применение высокопрочных сталей в конструкциях, подвергающихся многократному воздействию повторных нагрузок, не всегда оправдывается по экономическим соображениям.

Значительное снижение усталостной прочности наблюдается даже при необработанных после огневой резки или гильотинных ножниц кромок деталей. Поэтому кромки следует обрабатывать механическим способом.

Особенно чувствительны к концентрации напряжений стали повышенной и высокой прочности.

Повысить усталостную прочность конструкции можно путем снижения концентрации напряжений (механическая обработка кромок, зачистка швов, обеспечение плавного изменения сечения и т. д.), создания в местах концентрации напряжений сжатия, например, с помощью нагрева мест концентрации, предварительной вытяжкой конструкций, обкаткой подкрановых балок кранами с допустимой перегрузкой и т. д.

 
 

——————————————————————————————————-

1. Развитие металлических конструкций, общая характеристика, область применения, достоинства и недостатки (стр.1-9).

2 . Как выбирают стали при проектировании? (9-10; 12-13).

3. Требуемые свойства металлов и их оценка (стр.10-11).

4. Классификация сталей (стр.11-12).

5. Какие факторы влияют на свойства стали? (стр.13-15).

6. Какие виды разрушения металла? (стр.15).

7. Как работает металл под нагрузкой при однократном нагружении?(стр.16-17)

8. Что такое усталость металла? Какие меры принимают для повышения усталостной прочности? (стр.18-19).

9. Что влияет на снижение усталостной прочности? (стр.19).



Источник

Стадия 1– упругая работа, связь между s и ε линейна и подчиняется закону Гука (2.1). smax = sp; Е=2,06·105 Мпа – cоnst.

Стадия 2 – упруго-пластическая работа, появляются отдельные сдвиги в зернах феррита, линейная связь между s и ε нарушается, Е — переменный.

Стадия 3 – текучесть, ε растут при N = сonst , происходит интенсивное движение дислокаций и увеличение их плотности, развитие линий сдвига в зернах феррита. Протяженность площадки текучести низкоуглеродистых сталей 1.5÷2.5%. Здесь ε = εост + εупр и smax = sт.

Стадия 4 – развитие деформаций сдерживается, линии сдвига искривляются, движение дислокаций затрудняется и рост ε возможен только при увеличении нагрузок (самоупрочнение), материал работает как упругопластический.

При s близких к su, продольные и поперечные деформации локализуются и в слабом месте образуется шейка с последующим разрывом.

Читайте также:  Ушиб и растяжение мышц бедра

Здесь, важным показателем (кроме sт = sу; su и ε) является отношение https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image026.gif — характеризует резерв прочности, т.к. рабочие s в элементах МК не >sу. Это отношение справедливо для сталей обычной и повышенной прочности.

Для высокопрочных сталей https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image028.gif = 0.8÷0.9.

Отношение https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image030.gif = 0.8÷0.85 характеризует сопротивление малым пластическим деформациям и оказывает большое влияние на устойчивость сжатых элементов.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image032.jpg

Рисунок 2.6 — Диаграмма растяжения стали и образования шейки

Диаграммы «s — ε» для различных сталей существенно различаются по параметрам. Если построить эти зависимости в относительных координатах s/s02 и ε/ε02 (где s02 — условный sт, установленный по εост= 0.2%), то различия будут очень малыми (в начале площадки текучести), что позволяет использовать при расчетах унифицированную диаграмму (рисунок 2.7), и более того, для упрочнения расчетных предпосылок при работе конструкций в стадии 2 диаграмму «s — ε» без большой погрешности (в сторону некоторого запаса) можно заменить идеализированной диаграммой упруго пластического тела (рисунок 2.8).

https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image034.jpg

    https://konspekta.net/lektsiiimg/baza1/2394128627199.files/image036.jpg

Рисунок 2.7 — Унификация диаграмм работы сталей

Рисунок 2.8 — Идеализированная диаграмма работы стали

При сжатии коротких образцов сталь ведет себя аналогично растянутым, su невозможно, т. к. сталь расплющивается.

Прочность — способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках — усталостной прочностью.

Пластичность — свойство металлов деформироваться без разрушения под действием внешних сил и сохранять измененную форму после снятия этих сил. Пластичность — одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом.

Упругость — свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упругость — свойство, обратное пластичности.

Твердость — способность металлов оказывать сопротивление проникновению в них более твердого тела.

Трещиностойкость — свойство материалов сопротивляться развитию трещин при механических и других воздействиях.

Ударная вязкость — работа, затраченная при динамическом разрушении надрезанного образца, отнесенная к площади поперечного сечения в месте надреза.

Усталость — процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушению.

Износостойкость — сопротивление металлов изнашиванию вследствие процессов трения. Износ заключается в отрыве с трущейся поверхности отдельных ее частиц и определяется по изменению геометрических размеров или массы детали.

Жаропрочность — способность металлов и сплавов длительно сопротивляться началу и развитию пластической деформации и разрушению под действием постоянных нагрузок при высоких температурах. Предел кратковременной прочности, предел ползучести и предел длительной прочности — численные характеристики жаропрочности.

Диаграмма деформации показывает зависимость изменения длины образца при постепенном возрастании величины прилагаемого усилия (рис. 21).

диаграмма деформации при испытаниии металлов на растяжение

В первый момент испытания длина образца увеличивается пропорционально нагрузке — чем больше растягивающее усилие, тем больше увеличение длины.

При этом образец деформируется упруго, т. е. при устранении нагрузки образец примет свою первоначальную длину. Такая деформация носит название упругой деформации.

При достижении нагрузкиPs в металле возникает заметная пластическая деформация — сдвиги слоев металла относительно друг друга, и при устранении нагрузки образец не принимает своей первоначальной длины.

Нагрузка, отвечающая этому моментуPs, называетсянагрузкой предела текучести.

Предел текучести металла

Отношение этой нагрузки к площади поперечного сечения называютпределом текучести.

формула предела текучести

гдеF — первоначальная площадь поперечного сечения образца в мм2.

Как видно из формулы, предел текучести измеряется в кг/мм2.

Величины, выраженные в таких единицах, называют напряжением.

Таким образом, пределом текучести называют напряжение, при котором начинает развиваться заметная пластическая деформация.

При дальнейшем увеличении нагрузки за пределом текучести прямолинейной зависимости между нагрузкой и длиной образца уже нет. Наконец наступает такой момент, когда нагрузка начинает падать, а в образце намечается образование сужения поперечного сечения (образование шейки).

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Источник