Работа силы упругости при растяжении пружины

Работа силы упругости при растяжении пружины thumbnail

Сила упругости, как мы знаем, возникает при деформации тел. По своему абсолютному значению она пропорциональна величине деформации (удлинению), а направлена в сторону, противоположную направлению смещения точек тела при деформации.

На рисунке 199, а показана пружина в ее естественном, недеформированном состоянии. Правый конец пружины закреплен, а к левому прикреплено тело. Если пружину сжать, сместив левый

Рис. 199,

ее конец на расстояние (рис. 199, и), то возникнет сила упругости, действующая со стороны пружины на тело, равная:

где — жесткость пружины.

При перемещении витков пружины сила упругости совершит работу. Какова величина этой работы?

Предположим, что левый конец пружины переместился из положения А в положение В (рис. 199, в). В этом положении деформация пружины равна уже не Значит, конец пружины переместился на расстояние Чтобы вычислить работу, нужно это перемещение умножить на силу. Но сила упругости в отличие от силы тяжести вблизи поверхности Земли при движении тела изменяется от точки к точке. Если в начальной точке она была равна то в конечной точке (в точке В) она стала равной

Для того чтобы вычислить работу силы упругости, нужно взять среднее значение силы упругости и умножить его на перемещение (см. § 75).

Сила упругости пропорциональна деформации пружины. Поэтому среднее значение силы упругости можно найти, используя метод, который был использован при нахождении среднего значения скорости при равноускоренном движении (см. § 18).

Для среднего значения скорости при равноускоренном движении мы получили формулу

— начальное и — конечное значение скорости. Подобно этому среднее значение силы упругости можно определить по формуле

На это-то значение силы упругости и нужно умножить перемещение чтобы получить работу этой силы:

Так как то формула для работы принимает вид:

Работа силы упругости равна половине произведения жесткости упругого тела на разность квадратов его начального и конечного удлинений.

Если конечное удлинение пружины равняется нулю т. е. пружина приходит в недеформированное состояние, то она

совершает работу

где — начальное удлинение пружины.

Интересно, что работа силы упругости имеет некоторое сходство с работой силы тяжести. Если сравнить выражения для работы этих двух сил:

и

то можно заметить, что в обоих случаях работа зависит от начального и конечного положений тела. В первой формуле высота определяет положение тела, на которое действует сила тяжести (например, относительно поверхности Земли). Во второй формуле удлинение определяет положение одного конца пружины относительно другого ее конца.

Работа как силы упругости, так и силы тяжести зависит не от формы, или длины пути, а только от начального и конечного положений движущегося тела.

Задача. При столкновении вагонов их буфера (по два на каждом вагоне) сжались на 5 см. Какая работа была при этом совершена силами упругости пружин, если известно, что при сжатии буфера на 1 см возникает сила упругости в 10 000 н?

Решен» е. Вычислим сначала работу одной из четырех пружин. Для этого воспользуемся формулой

Подставив сюда приведенные в условии задачи значения, получим:

Так как у сталкивающихся вагонов четыре пружины, то общая работа сил упругости равна — 5000 дж. Знак «минус» означает, что сила упругости пружин направлена против направления перемещения вагонов.

Упражнение 50

1. Как находится среднее значение сипы упругости?

2. В чем сходство работ, совершаемых силой упругости и силой гяжесги?

3. Чему равна работа силы упругости, если тело, на которое она действует, пройдя какое-то расстояние, вернулось в исходную точку?

4. Мальчик определил максимальную силу, с которой он может растягивать динамометр. Она оказалась равной 400 н. Какую он совершил при этом работу, если жесткость пружины

Рис. 200

5. К пружине, верхний конец которой закреплен, подвешено тело массой 18 кг. При этом длина пружины равна 10 см. Когда же к ней подвешивают тело массой 30 кг, ее длина становится равной 12 см.

Вычислите работу, которую нужно совершить, чтобы растянуть пружину от 10 до 15 см.

6. Цирковой артист, месса которого равна 60 кг, прыгает с высоты 10 м на растянутую сетку. На сколько прогнется при этом сетка?

Читайте также:  Растяжение в области щиколотки

Когда артист стоит неподвижно на сетке, прогиб ее равен 5 см.

7. На рисунке 200 показан график зависимости силы, необходимой для сжатия пружины детского пистолета, от ее деформации. Вычислите работу, которая совершается при сжатии пружины на 2 см. Докажите, что эта работа численно равна площади треугольника

Источник

Ïóñòü íà íåðàñòÿíóòóþ ïðóæèíó äëèíîé l0 äåéñòâóåò âíåøíÿÿ ñè­ëà Ðàáîòà ñèëû óïðóãîñòè, ðàñòÿãèâàÿ åå íà Δl0 = õ0 (ñì. ðèñ.).  ïîëîæåíèè õ = õ0 Fóïð = kx0. Ïîñëå ïðåêðàùåíèÿ äåéñòâèÿ ñèëû Ðàáîòà ñèëû óïðóãîñòè â òî÷êå õ0 ïðóæèíà ïîä äåéñòâèåì ñèëû Fóïð ñæèìàåòñÿ.

Работа силы упругости при растяжении пружины

Îïðåäåëèì ðàáîòó ñèëû óïðóãîñòè ïðè èçìåíåíèè êîîðäèíàòû ïðàâîãî êîíöà ïðóæèíû îò õ0 äî õ. Ïîñêîëüêó ñèëà óïðóãîñòè íà ýòîì ó÷àñòêå èçìåíÿåòñÿ ëèíåéíî, â çàêîíå Ãóêà ìîæíî èñïîëüçîâàòü åå ñðåäíåå çíà÷åíèå íà ýòîì ó÷àñòêå:

Ðàáîòà ñèëû óïðóãîñòè,

Òîãäà ðàáîòà (ñ ó÷åòîì òîãî, ÷òî íàïðàâëåíèÿ Ðàáîòà ñèëû óïðóãîñòè ñîâïà­äàþò) ðàâíà:

Ðàáîòà ñèëû óïðóãîñòè.

Ìîæíî ïîêàçàòü, ÷òî âèä ïîñëåäíåé ôîðìóëû íå çàâèñèò îò óãëà ìåæäó Ðàáîòà ñèëû óïðóãîñòè. Ðàáîòà ñèë óïðóãîñòè çàâèñèò ëèøü îò äåôîðìàöèé ïðóæèíû â íà÷àëüíîì è êîíå÷íîì ñîñòîÿíèÿõ.

Òàêèì îáðàçîì, ñèëà óïðóãîñòè, ïîäîáíî ñèëå òÿæåñòè, ÿâëÿåòñÿ êîíñåðâàòèâíîé ñèëîé.

  

Êàëüêóëÿòîðû ïî ôèçèêå

Ðåøåíèå çàäà÷ ïî ôèçèêå, ïîäãîòîâêà ê ÝÃÅ è ÃÈÀ, ìåõàíèêà òåðìîäèíàìèêà è äð.
Êàëüêóëÿòîðû ïî ôèçèêå
  

Ôèçèêà. Ðàáîòà.

Ðàáîòà â òåðìîäèíàìèêå; ñèëû òÿæåñòè, òðåíèÿ, óïðóãîñòè; ðàáîòà ýëåêòðè÷åñêîãî òîêà, âûõîäà ýëåêòðîíîâ; çàêîí Äæîóëÿ-Ëåíöà
Ôèçèêà. Ðàáîòà.
  

Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ôèçèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Îáùåå îïðåäåëåíèå ðàáîòû. Ìåõàíè÷åñêàÿ ðàáîòà.

Åñëè âåêòîðíàÿ ñóììà ñèë, ïðèëîæåííûõ ê òåëó, ðàâíà íóëþ, òî è ñóììàðíàÿ ðàáîòà âñåõ ñèë, ïðèëîæåííûõ ê òåëó, äîëæíà áûòü ðàâíà íóëþ.
Îáùåå îïðåäåëåíèå ðàáîòû. Ìåõàíè÷åñêàÿ ðàáîòà.
  

Ðàáîòà âûõîäà ýëåêòðîíîâ.

Òàáëèöà ðàáîòû âûõîäà òàêèõ ýëåêòðîíîâ êàê: áàðèé, âîëüôðàì, ãåðìàíèé, çîëîòî, êàëüöèé, ìîëèáäåí, íèêåëü è òä.
Ðàáîòà âûõîäà ýëåêòðîíîâ.

Источник

Сила упругости

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние. 

Рассмотрим простейшие деформации — растяжение и сжатие 

Сила упругости

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Закон Гука

Для малых деформаций x≪ l справедлив закон Гука. 

Закон Гука

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе. 

Fупр=-kx

Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние. 

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε=xl. Напряжением в теле называется отношение σ=-FупрS.  Здесь S — площадь поперечного сечения деформированного тела.  Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению. 

ε=σE.

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E≈2·1011 Нм2, а для резины E≈2·106 Нм2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня. 

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N→, называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения. 

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает. 

Вес тела — это сила, с которой оно действует на опору. 

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр. 

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

Читайте также:  Выдают больничный при растяжении связок

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k). 

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Источник

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Сила упругости — это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Силы, возникающие при пластических деформациях, не относятся к силам упругости.

Понятие о деформациях

Деформация — это изменение формы и размеров тела.

К деформациям относятся: растяжение, сжатие, кручение, сдвиг, изгиб.

Деформации бывают упругими и пластическими.

Закон Гука

Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину (displaystyle x) (разница между крайними положениями), сила упругости задается формулой [F=kx] где (displaystyle k) — коэффициент жесткости пружины.

Единицы измерения коэффициента жесткости: (k=)[Н/м].

Работа силы упругости при растяжении пружины

Закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела.

На штативе закреплён школьный динамометр. К нему подвесили груз массой 0,1 кг. Пружина динамометра при этом удлинилась на 2,5 см. Чему будет равно удлинение пружины, если масса груза увеличится втрое? (Ответ дайте в сантиметрах)

Согласно закону Гука [F=kDelta x] где k – жесткость пружины, ( Delta x) – удлинение пружины.
Найдем жесткость пружины, зная, что ( Delta x) = 2,5 см = 0,025 м при приложении силы, равно ( F=m_1g=0,1cdot 10=1text{ H} ): [k=dfrac{F}{Delta x}=dfrac{1}{0,025}=40text{ H/кг}] Если массу груза увеличить в 3 раза, то есть, (m_2=0,3) кг, то удлинение пружины будет равно: [Delta x=dfrac{F}{k}=dfrac{m_2g}{k}=dfrac{3cdot0,1cdot10text{ H}}{40text{ H/кг}}=0,075text{ м}=7,5text{ см}]

Ответ: 7,5

К системе из кубика массой M = 3 кг и двух пружин приложена постоянная горизонтальная сила F величиной 20 Н (см. рисунок). Между кубиком и опорой трения нет. Система покоится. Жёсткость первой пружины (k_1 = 400 text{ Н/м}). Жёсткость второй пружины (k_2 = 800 text{ Н/м}). Каково удлинение первой пружины? (Ответ дайте в сантиметрах)

Работа силы упругости при растяжении пружины

Согласно закону Гука удлинение (Delta x) пружины связано с ее жесткостью k и приложенной к ней силе F выражением (F=kDelta x). На первую пружину действует такая же сила F, что и на вторую, так как трения между кубиком и опорой нет. То, что первая пружина соединена со второй через кубик, здесь не имеет никакого значения, соответственно удлинение первой пружины – это величина, равная: [Delta x=dfrac{F}{k_1}=dfrac{20text{ H}}{400text{ H/м}}=0,05 text{ м}=5 text{ см}]

Ответ: 5

Определите силу, под действием которой пружина жёсткостью 200 Н/см удлинится на 5 мм.

Согласно закону Гука ( F=kDelta x ), где k – жесткость пружины, ( Delta x) – удлинение пружины, получаем: [F=kDelta x=(dfrac{200}{0,01})text{H/м}cdot(5cdot10^{-3})text{м}=100text{ H}]

Ответ: 100

Пружина одним концом прикреплена к неподвижной опоре, к другому концу приложили силу равную 1500 Н, при этом пружина растянулась на 0,2 м. Определите жесткость данной пружины. Ответ дать в Н/м.

После растяжения, пружина покоится и на неё действуют 2 силы направленные в противоположные направления: (F_{text{упр}}) – сила упругости и F – приложенная сила.
Тогда по первому закону Ньютона: [F_{text{упр}}=F] По закону Гука: [F_{text{упр}}=kx] Приравниваем эти формулы: [F=kx] Тогда [k=frac{F}{x}=frac{1500}{0,2}=7500 text{ Н/м}]

Ответ: 7500

К потолку прикреплены одним концом две пружины с одинаковой жесткостью. За другой конец первую пружину растягивают с силой (F_{text{1}}), которая в 2,5 раза больше силы (F_{text{2}}), растягивающей вторую пружину. При этом вторая пружина растянулась на 0,4 м. Насколько растянулась первая пружина? Ответ дать в метрах.

После растяжения обе пружины находятся в покое и на них, кроме данных сил действует сила упругости. Тогда по первому закону Ньютона: [F_{text{упр1}}=F_{text{1}}] [F_{text{упр2}}=F_{text{2}}] где (F_{text{упр1}}) – сила упругости, действующая на первую пружина, (F_{text{упр2}}) – на вторую.
По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [kx_{1}=F_{1}quad(1)] [kx_{2}=F_{text{2}}quad(2)] где (x_{1}) – удлинение первой пружины, (x_{2}) – второй. Разделим (1) на (2), получится: [frac{x_{1}}{x_{2}}=frac{F_{text{1}}}{F_{text{2}}}Rightarrow x_{1}=dfrac{F_{text{1}}x_{2}}{F_{text{2}}}=2,5cdot0,4=1text{ м}]

Читайте также:  Прочность бетона при растяжении

Ответ: 1

К грузу массой (m) аккуратно подвесили другой груз массой (M), при этом пружина с жесткостью 1200 Н/м удлинилась так, как показано на рисунке. Найдите массу (M). Ускорение свободного падения считать равным 10 м/(c^{2}). Ответ дать в кг.

Работа силы упругости при растяжении пружины

Рассмотрим ситуацию до подвешивания груза: система тел “груз и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg=F_{text{упр}1}] Рассмотрим ситуацию после подвешивания груза: систама тел “2 груза и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg+Mg=F_{text{упр2}}] По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [mg=kx_{1}quad(1)] [mg+Mg=kx_{2}quad(2)] Вычтем (1) из (2), получится: [Mg=k(x_{2}-x_{1})Rightarrow M=dfrac{k(x_{2}-x_{1})}{g}=frac{1200cdot0,03}{10}=3,6text{ кг}]

Ответ: 3,6

Источник

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Работа силы упругости при растяжении пружины

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси х). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Деформации растяжения и сжатия пружины:

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L0, то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

Fуп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

$ Δх

Рис. 2. Портрет Роберта Гука.

Этот фундаментальный закон был открыт английским ученым Робертом Гуком в 1660г. Кроме этого он сделал много других замечательных изобретений и экспериментов:

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Работа силы упругости при растяжении пружины

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины. Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7. Всего получено оценок: 75.

Источник