Р6м5 предел прочности при растяжении

Р6м5 предел прочности при растяжении thumbnail

Долговечность и надежность инструмента зависит от материала и его конструкционной прочности. Повышение эксплуатационных качеств инструмента достигается правильным выбором марки стали.

Материал для инструмента выбирается с обязательным учетом:

1) Условий эксплуатации, а именно:

— характера приложения нагрузки (статическая, динамическая, знакопостоянная, знакопеременная, контактная и т. д.) и ее максимальной величины;

— характера напряжений;

— температурных условий работы;

— наличия агрессивной среды;

— типа трения.

2) Механических свойств и в первую очередь сочетания высоких пределов усталости и циклической вязкости, обеспечивающих надежную и длительную работу данного изделия.

3) Технологических и структурных особенностей:

— закаливаемости и прокаливаемости в рабочих сечениях;

— устойчивость аустенита в процессах теплового воздействия и характера превращений;

— склонность к обезуглероживанию, окислению и росту зерна при длительном нагреве;

— обрабатываемости на различных стадиях формообразования.

4) Особенностей конструкции обеспечивающих коробление и противодействие к образованию трещин.

5) Экономические соображения:

— стоимости;

— минимального содержания легирующих элементов;

— необходимости селектирования отдельных элементов;

— условий поставки в соответствии с ГОСТами или отраслевыми нормативами.

Для изготовления дисковых фрез или металлорежущего инструмента используются инструментальные, легированные, теплостойкие быстрорежущие стали: Р6М5, Р12, Р18, Р8М3, Р12Ф3 и др.). Для сравнения возьмем три марки стали: Р12, Р18 и Р6М5.Химический состав сталей указан в таблице 1.1:

Таблица 1.1 — Химический состав сталей, %.

 

Марка

стали

CCrWV Mo

(не более)

Mn (не более) Si (не более) Ni (не более) S (не более) P (не более) Co (не более)
Р6М50,8-0,883,8-4,45,5-6,51,7-2,15-5,50,40,50,40,030,03
Р180,7-0,83,8-4,417-18,51-1,410,50,50,40,030,030,5
Р120,8-0,92,8-3,612-131,5-1,910,50,50,50,030,030,5

В таблице 1.2 приведены механические свойства сталей, в таблице 1.3 — значения теплостойкости:

Таблица 1.2 — Механические свойства сталей.

Марка

стали

Режим термической обработки Предел прочности

МПа

HRC
tзак , °С tотп , °C
Р6М512205603300-340063-65
Р1212505603000-320064
Р1812805502900-310064

Примечание. Закалка на зерно балла 10; трехкратный отпуск при 560 о С. Таблица 1.3 — Теплостойкость сталей

Марка сталиТемпература, 0 С Предел прочности МПаВремя, чHRC
Р6М56203300-3400463
Р125803000-3200463-64
Р186202900-3100463-64

Быстрорежущие стали, в отличие от легированных и углеродистых сталей, имеют высокую теплостойкость, сохраняя мартенситную структуру и твердость более 60 HRC при нагреве до 600-650° С, более высокую прочность и повышенное сопротивление пластической деформации.

Проанализируем химические составы сталей Р6М5, Р18 и Р12.

Основными легирующими элементами быстрорежущих сталей, обеспечивающих высокую красностойкость, являются вольфрам, молибден, ванадий и кобальт. Кроме них все стали легируют хромом. Важным компонентом является углерод.

Содержание углерода в стали должно быть достаточным, чтобы обеспечить образование карбидов легирующих элементов. Так при содержании углерода меньше 0,7 % не получается высокой твердости в закаленном и в отпущенном состоянии. Влияние повышенного содержания углерода в сталях с молибденом более благоприятно, чем в вольфрамовых.

Карбидообразующие элементы образуют в стали специальные карбиды: Me6 С на основе вольфрама и молибдена, MeС на основе ванадия и Me23 С6 на основе хрома. Часть атомов Me составляет железо и другие элементы.

Вольфрам и молибден являются основными легирующими элементами, обеспечивающими красностойкость. Они образуют в стали карбид Me6 С, который при аустенитизации часто переходит в твердый раствор, обеспечивая получение после закалки легированного вольфрамом (молибденом) мартенсита. Вольфрам и молибден затрудняют распад мартенсита при нагреве, обеспечивая необходимую красностойкость. Нерастворенная часть карбида Me6 С приводит к повышению износостойкости стали. Молибден по влиянию на теплостойкость замещает вольфрам по соотношению Mo : W = 1 : 1,5.

Ванадий образует в стали наиболее твердый карбид VC (MeС). Максимальный эффект от введения в сталь ванадия достигается при условии, что содержание углерода в стали будет достаточным для образования большого количества карбидов и для насыщения твердого раствора. Карбид MeС, частично растворяясь в аустените, увеличивает красностойкость и повышает твердость после отпуска благодаря эффекту дисперсионного твердения. Нерастворенная часть карбида MeС увеличивает износостойкость стали.

Хром во всех быстрорежущих сталях содержится в количестве около 4%. Он является основой карбида Me23 С6 . При нагреве под закалку этот карбид полностью растворяется в аустените при температурах, значительно более низких, чем температуры растворения карбидов Me6 С и MeС. Вследствие этого основная роль хрома в быстрорежущих сталях состоит в придании стали высокой прокаливаемости. Он оказывает влияние и на процессы карбидообразования при отпуске.

Кобальт применяют для дополнительного легирования быстрорежущей стали с целью повышения ее красностойкости. Кобальт в основном находится в твердом растворе и частично входит в состав карбида Me6 С. К недостаткам влияния кобальта следует отнести ухудшение прочности и вязкости стали, увеличение обезуглероживания.

Марганец в небольших количествах может переводить серу в более благоприятное соединение.

Сера является вредной примесью, способствующая красноломкости. В ледебуритных сталях отрицательная роль образующихся сульфидов меньше из-за присутствия в структуре значительно большего числа избыточных карбидов, которые могут также ухудшать эти свойства. Кроме того, сульфиды при низких температурах начала затвердевания этих сталей часто служат центрами кристаллизации и присутствуют внутри крупных эвтектических карбидов. Их количество уменьшается на границе зерен. Для уменьшения количества серы (до 0,015 %) используют электрошлаковый переплав.

Фосфор также является вредной примесью. При содержании фосфора более чем 0,02-0,03 % заметно снижается вязкость и прочность, усиливаются искажения в решетке мартенсита.

Ранее наиболее широко применялась сталь P18. Она содержит больше вольфрама, чем другие стали, и поэтому имеет повышенное количество карбидов (22-25 % после отпуска). Основной карбид М6 С; доля карбида МС не более 2-3 % от общего количества карбидной фазы. Преимущества стали Р18: 1) малая чувствительность к перегреву (из-за влияния повышенного количества карбидов), и, в связи с этим, хорошая стабильность свойств сталей разных плавок; 2) хорошая шлифуемость; содержание ванадия в сталях с 18 % W меньше, чем в других сталях.

Сталь имеет немного лучшие режущие свойства при обработке сталей с избыточными карбидами (в частности, шарикоподшипниковых) и в инструментах относительно простой формы; это связано с более высоким сопротивлением пластической деформации из-за большего количества карбидов.

Резкое сокращение производства стали Р18 объясняется как дефицитностью вольфрама и созданием теперь сталей с более высокими свойствами, так и тем, что сталь Р18 имеет следующие недостатки: а) более крупные размеры избыточных карбидов: до 30 мкм, что снижает стойкость инструментов с тонкой рабочей кромкой и небольшого сечения; б) недостаточно высокие прочность и вязкость, сильно зависящие от профиля проката; они удовлетворительные лишь в небольшом сечении; прочность составляет 3000-3300 и 2000-2300 MПa в прутках диаметром 30 и 60-80 мм соответственно; в) пониженная горячая пластичность, особенно в крупном профиле. Это затрудняет также изготовление инструментов горячей пластической деформацией.

Читайте также:  Народные средства при растяжении связок голеностопного сустава

Сталь Р12, разработанная позже, заменяет сталь Р18. Основной карбид М6 С; количество карбида МС несколько больше (8 %), чем у стали Р18.

В твердом растворе стали Р12 больше ванадия, что позволяет устанавливать его содержание в стали более высоким; 1,5-1,9 % без заметного ухудшения шлифуемости. В этом случае теплостойкость стали Р12 немного выше, чем стали Р18.

При почти одинаковой карбидной неоднородности (в прокате равного профиля) размеры карбидных частиц и количество карбидов в стали Р12 меньше, чем у стали Р18.

Вследствие этого, а также и более низкого содержания хрома, горячая пластичность стали Р12 на 10-15 % выше, чем у стали Р18. По этой же причине прочность и вязкость стали Р12 в одинаковом профиле на 5-8 % выше, чем стали Р18.

Режущие свойства сталей Р18 и Р12 близки; они несколько выше у стали Р12 в инструментах с тонкой рабочей кромкой и немного ниже, чем у стали Р18 в инструментах простой формы, обрабатывающих более твердые материалы.

Сталь Р6М5 широко применяется для тех же назначений, как и сталь Р12. Теплостойкость этой стали лишь немного ниже, чем сталей Р12 и Р18.

Размеры карбидных частиц меньше, чем в стали Р18. Поэтому прочность стали Р6М5 после одинаковой деформации на 10-15 % больше, а вязкость на 50-60 % выше, чем у стали Р18. Это преимущественно наблюдается и в крупных сечениях.

С повышением температуры до 500-600 °С прочность стали Р6М5 снижается сильнее, а вязкость возрастает больше, чем у сталей Р18 и Р12. Пластичность стали Р6М5 при температурах деформирования выше, чем у стали Р18. Твердость после отжига ниже, что обеспечивает несколько лучшую обрабатываемость резанием. Ее шлифуемость хорошая и не ниже, чем у стали Р18.

У стали Р6М5 с 5 % Мо сохраняются (но в меньшей степени) недостатки, вносимые молибденом. Она чувствительна к обезуглероживанию и к разнозернистости. Для повышения стабильности свойств необходимо устанавливать содержание углерода в более узких пределах.

При увеличении содержания кремния до 0,8-0,9 % немного улучшаются вязкость и твердость стали[3,8].

Таким образом, проанализировав стали Р18, Р12 и Р6М5, можно сделать вывод, что, например, для дисковой фрезы наиболее целесообразно выбрать сталь Р6М5, учитывая выше перечисленные характеристики, и ее меньшую стоимость.

Источник: дипломный проект

на тему: «Проект участка термической обработки дисковых фрез»

Надточия Тимофея Сергеевича

Руководитель проекта:

доц. Протасенко Т.А.

Министерство образования и науки Украины

Национальный политехнический университет

«Харьковский политехнический институт»

Кафедра «Металловедение и термическая обработка металлов»

Источник

Марка:Р6М5К5
Класс:Сталь инструментальная быстрорежущая
Используется для проката: Сортовой и фасонный прокат: ГОСТ 19265-73 , ГОСТ 2590-2006, ГОСТ 2591-2006
Калиброванный пруток: ГОСТ 19265-73, ГОСТ 7417-75
Шлифованный пруток и серебрянка: ГОСТ 19265-73, ГОСТ 14955-77
Полоса: ГОСТ 19265-73, ГОСТ 4405-75
Поковки и кованые заготовка: ГОСТ 19265-73, ГОСТ 1133-71
Использование в промышленности:Для обработки высокопрочных нержавеющих и жаропрочных сталей и сплавов в условиях повышенного разогрева режущей кромки.
Твердость материала:HB 10-1 = 269 МПа
Температура критических точек:Ac1 = 840, Ac3(Acm) = 875, Ar3(Arcm) = 805, Ar1 = 765
Температура ковки, °С:Начала 1160, конца 850. Охлаждение в колодцах при 750-780 °С
Обрабатываемость резанием:
Свариваемость материала:Не применяется для сварных конструкций
Флокеночувствительность: Не чувствительна
Склонность к отпускной хрупкости:Малосклонна
Аналоги:Р9К5, Р18, Р6М5

Описание Р6М5К5

Сталь используется для чернового и получистового инструмента при обработке улучшенных легированных и нержавеющих сталей в условиях повышенного разогрева режущей кромки.. Сталь имеет повышенную склонность к обезуглероживанию, хорошую вязкость, повышенное сопротивление износу, хорошую шлифуемость.

Расшифровка

  • Буква Р — указывает, что сталь быстрорежущая;
  • Цифра 6 — указывает на наличие Вольфрама (W) и его средний % в стали (в данной стали значение Вольфрама 5.70–6.70%);
  • Буква М — указывает на наличие Молибдена (Mo);
  • Цифра 5 — указывает на средний % содержания Молибдена (в данной стали значение Молибдена 4,8–5,3%);
  • Буква К — указывает на наличие Кобальта (Co);
  • Цифра 5 — указывает на средний % содержания Кобальта (в данной стали значение Кобальта 4,7–5,2%).

Химический состав стали Р6М5К5

Химический элемент%
Углерод (C)0,84 – 0,92
Кремний (Si)0,2 – 0,5
Марганец (Mn)0,2 – 0,5
Никель (Ni)до 0,6
Фосфор (P)до 0,03
Хром (Cr)3,8 – 4,3
Молибден (Mo)4,8 – 5,3
Вольфрам (W)5,7 – 6,7
Ванадий (V)1,7 – 2,1
Кобальт (Co)4,7 – 5,2
Сера (S)до 0,03
Медь (Cu)до 0,25
Железо (Fe)~75

Механические свойства стали Р6М5К5 в состоянии поставки при 20 °С

Предел упругости, МПаПредел прочности при растяжении, МПаПредел текучести условный, МПаПредел текучести при сжатии, МПаΤк МПаПредел прочности при изгибе, МПаУдарная вязкость, KCU (Дж/см2)
23402050310037501820300025

Механические свойства стали Р6М5К5 в состоянии поставки (после отжига) при 20 °С

σ0,05 (МПа)σ0,2 (МПа)σв (МПа)δ5 (%)ψ (%)σсж. 0,2 (МПа)σсж. (МПа)ε (%)Τк (МПа)γ (%)KCU (Дж/см2)
240 (5)510 (20)850 (30)12 (1)14 (1)520 (13)2720 (80)54 (1,5)590 (18)60 (1,4)18 (1)

Механические свойства стали Р6М5К5 в термообработанном состоянии при повышенных °С

Температура испытания, °С200400500550600650
Предел прочности при изгибе, МПа382039803040298027902500
HV833769726686626528
HRC ∂ (HB)646261595752

Твердость стали Р6М5К5

Состояние поставки, режимы термообработкиHRC ∂ (НВ)
Прутки и полосы отожженныеДо (269)
Образцы. Закалка 1230 °С, масло. Отпуск (2-х или 3-х кратный) 550 °С, 1 чСв. 65

Твердость стали Р6М5К5 в зависимости от температуры отпуска

Температура отпуска, °С500540580620660
Закалка 1220 °С, масло. Отпуск трехкратный по 1 ч
HRC ∂ (HB)6768676357

Физические свойства Р6М5К5

Температура испытания, °С20100200300400500600700800900
Модуль нормальной упругости E, ГПа2,2
Плотность, pn, кг/см38200
Коэффициент теплопроводности Вт/(м ·°С)272829303236343629
Удельное электросопротивление (p, НОм · м)458
Коэффициент линейного расширения (a, 10-6 1/°С)
Удельная теплоемкость (С, Дж/(кг · °С))

Источник

σвВременное сопротивление (предел прочности при разрыве);Мк  Температура начала мартенситного превращения;σвс Предел прочности при сжатии;G Модуль сдвига;σи
 Предел прочности при изгибе;v Коэффициент Пуассона;τпч Предел прочности при кручении;γ Плотность;σт Предел прочности физический (нижний предел текучести);C Удельная теплоемкость;σ0,05 Условный предел упругости с допуском на остаточную деформацию 0,05%;λ Теплопроводность;σ0,2 Предел текучести условный с допуском на величину пластической деформации при нагружении 0,2%;α Коэффициент линейного расширения;δр Относительное равномерное удлинение;H Напряженность магнитного поля;δ Относительное удлинение после разрыва;μ Магнитная проницаемость;ψ Относительное сужение после разрыва;B Магнитная индукция;KCU Ударная вязкость, определенная на образцах с концентратором вида U;Bs Индукция насыщения;KCV Ударная вязкость, определенная на образцах с концентратором вида V;ΔB Разброс магнитной индукции вдоль и поперек направления прокатки;Tk Критическая температура хрупкости;PB,v0 Удельные магнитные потери при частоте тока v0 и индукции B;HB Твердость по Бринеллю;Hc Коэрцитивная сила;d10 Диаметр отпечатка по Бринеллю при диаметре шарика 10 мм и испытательной нагрузке 2943 Н;ρ Удельное электросопротивление;HRA Твердость по Роквеллу (шкала А, конусный наконечник с общей нагрузкой 588,4 Н);Kp Красностойкость;HRB Твердость по Роквеллу (шкала В, сферический наконечник с общей нагрузкой 980,7 Н); tлик Температура полного расплавления металла;HRC Твердость по Роквеллу (шкала С, конусный наконечник с общей нагрузкой 1471 Н); tсол Температура начала плавления металла;HV Твердость по Виккерсу при нагрузке 294,2 Н и времени выдержки 10-15 с;d0 Начальный диаметр образца;HSD Твердость по Шору;l0 Длина расчетной части образца;Тз Заданный ресурс;V Скорость деформирования образца;σ tдп,Тз Условный предел длительной прочности (величина напряжений, вызывающая разрушение при температуре t и заданном ресурсе);è
 Скорость деформации образца;σ-1 Предел выносливости при симметричном цикле (растяжение-сжатие);a Толщина образца при испытании листов на изгиб;τ-1
 Предел выносливости при симметричном цикле (кручение);d Толщина оправки при испытании листов на изгиб;σа Наибольшее положительное значение переменной составляющей цикла напряжений;S Толщина стенки;Δε Размах упруго-пластической деформации цикла при испытании на термическую усталость;Cl’ Хлор-ион;N Число циклов напряжений или деформаций, выдержанных нагруженным объектом до образования усталостной трещины определенной протяженности или до усталостного разрушения;F’ Фтор-ион;σ0 Начальное нормальное напряжение при релаксации;Σ Коэффициент износостойкости при абразивном износе;στ
 Остаточное нормальное напряжение при релаксации;Σr Коэффициент износостойкости при гидроабразивном износе;K1c Коэффициент интенсивности напряжений;v Скорость резания;Ac1 Температура начала α—>γ превращения при нагреве (нижняя критическая точка);Kv Коэффициент относительной обрабатываемости; Ac3
 Температура конца α—>γ превращения при нагреве (верхняя критическая точка);T Время; Ar1
 Температура конца γ—>α превращения при охлаждении (нижняя критическая точка);t Температура; Ar3
 Температура начала γ—>α превращения при охлаждении (верхняя критическая точка);tотп Температура отпуска; Температура начала мартенситного превращения;tисп Температура испытания;РД Ручная дуговая сварка покрытыми электродами;РАД Ручная аргонодуговая сварка неплавящимся электродом;МП Механизированная сварка плавящимся электродом в среде углекислого газа;АФ Автоматическая сварка под флюсом;ЭШ Электрошлаковая сварка;ЭЛ Электронолучевая сварка;КТ Контактная сварка;Kv Коэффициент относительной обрабатываемости стали.
1) Для условий точения твердосплавными резцами Kv=v60/145, где v60 — скорость резания, соотвествующая 60-ти минутной стойкости резцов при точении данного материала, м/мин; 145 — значение скорости резания при 60-ти минутной стойкости резцов при точении эталонной стали марки 45.
2) Для условий точения резцами из быстрорежущей стали Kv=v60/70, где 70 — значение скорости резания при 60-ти минутной стойкости быстрорежущих резцов при точении эталонной стали марки 45.

Источник

Допускаемые напряжения принимаем по нормам, систематизированных в виде таблиц, что удобнее для практического применения при проектировочных и проверочных прочностных расчетов.

Читайте также:  Растяжение связок тазобедренного сустава

Примечание. Условные обозначения термической обработки:

О — отжиг; Н — нормализация; У — улучшение; Ц — цементация; ТВЧ — закалка с нагревом т.в.ч.; В — закалка с охлаждением в воде; М — закалка с охлаждением в масле; НВ — твердость по Бринеллю. Число после М, В, Н или ТВЧ — среднее значение твердости по HRC.

*) Римскими цифрами обозначен вид нагрузки (см. таблицу 1): I — статическая; II — переменная, действующая от нуля до максимума и от максимума до нуля (пульсирующая), III — знакопеременная (симметричная).

Допускаемые напряжения для углеродистых сталей обыкновенного качества в горячекатаном состоянии

табл.1

Марка стали по ГОСТ 380Допускаемые напряжения, кгс/см2
При растяжении
[ σ р ]
При изгибе
[ σ из ]
При кручении
[ τ кр ]
При срезе
[ τ ср ]
При смятии
[ σ см ]
IIIIIIIIIIIIIIIIIIIIIIIIIII
Ст 211508006001400100080085065050070050040017501200
Ст 312509007001500110085095065050075050040019001350
Ст 4140095075017001200950105075060085065050021001450
Ст 5165011509002000140011001250900700100065055025001750
Ст 619501400110023001700135014501050800115085065029002100

наверх

Механические свойства и допустимые напряжения углеродистых качественных конструкционных сталей

табл.2

Марка стали ГОСТ 1050Термо-
обработка
Предел прочности при растяжении σ вПредел текучести σ тПредел выносливости приДопускаемые напряжения *, кгс/см2, при
растяжении σ −1ризгибе σ −1кручении τ −1растя-
жении [σ р]
изгибе [σ из]кручении [τ кр]срезе [τ ср]смятии [σ см]
кгс/мм 2IIIIIIIIIIIIIIIIIIIIIIIIIII
8Н3320121591100800600130095075080060045060045035016501200
10Н342112,515,59,511008006001450100075080060045065045035016501200
Ц-В59402514,51811130090070015501150900100065055070050040019501350
15Н382313,5171012508506501500110085095065050075050040018501250
Ц-В594525162012145050080017501250100011008006008506004502100750
20Н4225151911,51400115095017001200950105070055085060045021001750
Ц-В5950301822,513,5165011509002000140011001250750550100060045024001750
25Н4628172112,515001100850180013001050110080060090065050022001650
Ц-В5855352025151800130010002100160012501350950750110080060027001950
30Н50301822,513,5165011509002000140011001250900700100065055024001750
У603521,5271620001400105024001750135015001050800120085065030002100
35Н5432192414,5180012509502100155012001350900700110075055027001900
У6538232917,521001500115026001850145016001100850130090070052002200
В351006536452733002300180040002900220025001650135020001400110050003500
40Н5834212615,519001300105023001650130014001000750115080060028002000
У70402531,519230016001250270020001550170012009501400100080034002400
В351006536452734002300180040002900220025001750135020001400110050003500
45Н61362227,516,520001400110024001750135015001050800125085065030002100
У7545273420,52400170013502900215017001850130010001450105080036002600
М35906532,540,524,53000210016003600260020002300165012001850125095045003100
В4290-1207032,540,524,53000210016003600260020002300160012001850125095045003100
В4812095435432,540002800210048003400270030002100160024001700130060004200
ТВЧ567545273420,52400170013502900210017001850130010001450105080036002600
50Н6438232917,521001400115025001850145016001100850125085065031002200
У907032,540,524,53000210016003600260020002300180012001850125095045003100
20ГН462816,620,512,515001000800180013001000110080060090065050022001600
В574220,525,51519501300100023001650125014501000750115080060029001900
30ГН55322025151800130010002100160012501350950750110080060027001900
В685624,530,518230016001200270019501500170012009001400100075034002400
40ГН603622271620001400110024001750135015001050800120085065030002100
В4584593538232800190015003300240019002100150011501700120095042002900
50ГН664023,529,517,521001500115026001850145016001100750130090070032002200
В82563037222700190015003300250018502500155011001650105075041002900
65ГН75442734202400175013502900210017001850130010001450105080036002600
У907032,540,524,53000210016003600260020002300160012001850125095045003100
М4515012553674050003500260060004300330038002600200030002100160076005200
Читайте также:  Растяжение связок голеностопа питание

Примечание:

Марки стали 20Г; 30Г; 40Г; 50Г; 65Г — старые марки стали, действующие до 1988 г. Буква Г в них обозначала содержание марганца около 1 %.

наверх

Механические свойства и допускаемые напряжения легированных конструкционных сталей

табл.3

Марка стали ГОСТ 1050ГОСТТермо-
обработка
Предел прочности при растяжении σ вПредел текучести σ тПредел выносливости приДопускаемые напряжения *, кгс/см2, при
растя-
жении σ −1р
изгибе σ −1кручении τ −1растя-
жении [σ р]
изгибе [σ из]кручении [τ кр]срезе [τ ср]смятии [σ см]
кгс/мм 2IIIIIIIIIIIIIIIIIIIIIIIIIII
10Г24543Н432517,52212,514001100900170013501100105075060085065050021001650
09Г2С192825035192414170012009502000150012001250900700100070055025001800
10ХСНД19282544021,52715,518501400110022001600135014001000800110080065028002100
20Х4543Н603021261519001350105023001650130014001000750115085060028002000
У70502835202400175014002900220017501800130010001450105080036002600
М5985633442242900210017003500145021002200155012001750125095043003200
40ХН633325311820001550125024001900155015001150900120095075030002300
У80653240232700200016003200250020002000150011501600115090040003000
М391109044553238002800220045003400270028002000160023001650130056004200
М4813011052653844003300260053004100320033002400190027001950150067004900
45ХН6535263218,521001600130025001950160015501150900125095075031002400
У957538472732002400190038002900230024001750135019001350105048003600
М4814012056704048003500280057004300350036002600200029002000160072005200
50ХН65352632,518,521001600130025002000160016001200900125090070031002400
М4815013060754350003700300060004600370037002700210030002200170075005500
35Г2Н63372531,51820001550125024001900160015001150900120095075033002300
В, НВ249806532402327002000160032002500200020001450115016001150