Продольная сила при растяжении

Продольная сила при растяжении thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Читайте также:  Модуль начального растяжения провода

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Растяжением или сжатием называется такой вид деформаций, при котором в любом поперечном сечений бруса возникают только продольная сила . Брусья с примолинейной осью называют стержнями (рис.1).

Рис. 35.

Примой брус постоянного поперечного сечения , длиной , жестко защемленный одним концом и нагруженный на другом конце растягивающей силой F (рис.35). Под действием этой силы, брус удлинится на некоторою величину которую назовем абсолютным удлинением. Отношение абсолютного удлинения к первоначальной длине назовем относительным удлинением и обозначим .

Читайте также:  Сводит икру на ноге как растяжение

При расчете, мы будем считать, что растяжение и сжатие бруса связано только с приложенными внешними силами, то есть учитываем только напряжения, действующие на стержень, температуру и время действий сил не будем учитывать.

При растяжении и сжатии продольные силы определяется методом сечении. Правило знаков будем определять следующим образом: растягивающие, то есть, направленные от сечения, продольные силы будем считать положительными, сжимающие, то есть направленные к сечению, будем считать отрицательными.

Для наглядного изображения распределения вдоль оси бруса продольных сил и нормальных напряжений строят графики, называемые эпюрами, причем для нормальных напряжений применяется то же правило знаков, что и для продольных сил.

При растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению и вычисляемые по формуле:

площать поперечного сечения бруса,

Очевидно, что при растяжении и сжатии форма сечения на напряжения не влияет.

Условие прочности бруса при растяжении и сжатии определяется следующим образом:

Здесь называют допускаемым напряжением, максимальная продольная сила.

Напряжения и деформаций при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Гоберта Гука. Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению бруса.

Математически закон Гука можно вписать в виде равенства:

Коэффициент пропорциональности Е характеризует жесткость материала и называется модулем продольной упругости. Модуль упругости и напряжения выражаются в одинаковых единицах.

Если в формулу закона Гука поставим выражения и то получим:

Контрольные вопросы

1. Что такое растяжение-сжатие?

____

2. По какому методу определяется нормальные силы?

__

3. По какой формуле определяется относительное удлинение или укорочение?

____

4. Какое напряжение появляется при растяжении-сжатии, и по какой формуле определяется?

____

5. Как пишется условие прочности при растяжении-сжатии?

____

6. Что такое модуль упругости, и в чем измеряется?

____

7. От чего зависит модуль упругости?

__

8. По какой формуле определяется абсолютное удлинение или укорочение бруса при растяжении-сжатии?

____

Пример 4.1.

Для данного ступенчатого бруса (рис.36.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .

Рис.36.

1. Разбиваем брус на участки как показоно на рис. 37а.

Рис.37.

2. По методу сечения определяем ординаты эпюр и каждого сечения.

4. Строим эпюру (рис. 37б.)

5. Определяем перемещение свободного конца бруса.

Пример 4.2.

Для данного ступенчатого бруса (рис.38.) построить эпюру продольных сил, эпюру нормальных напряжений и определить перемещение свободного конца, если .

Рис. 38.

1. Разбиваем брус на участки как показоно на рис. 39а.

2. По методу сечения определяем ординаты эпюр и каждого сечения.

Рис. 39.

3. Строим эпюру (рис. 37б.)

4. Определяем перемещение свободного конца бруса.

Для решения первой задачи контрольной работы 2 следует выполнить следующие действия:

1) Изучить темы 7,8,9.

2) Ответить на контрольные вопросы по темам 7,8,9.

2) Выполнить самостоятельно пример 2.2.

Данные для своего варианта первой задачи контрольной работы 2 посмотрите в таблице 4. Расчетную схему надо посмотреть в рис.40.

Таблица 4 (для первой задачи контрольной работы 2)

Номер варианта Номер схемы на рис. 40.
кН
I 3,6 1,4
II 2,4 1,1
III 3,5 2,5
IV 2,9 1,4
V 1,9 1,1
VI 3,7 2,3
VII 4,4 2,6
VIII 4,6 3,1
IX 4,2 3,2
X 3,1 1,5
I 3,6 2,4
III 3,5 2,5
V 2,8 1,2
VII 3,0 2,2
II 2,8 1,4
IV 2,4 1,2
VI 3,6 2,6
IX 2,1 1,0
VIII 2,6 1,3
X 3,8 1,6
V 1,4 3,2 1,8
III 3,4 1,5
VII 2,3 2,9 1,9
VIII 3,6 1,7
II 2,9 1,6
I 3,4 2,1
III 3,5 2,4
V 3,6 2,3
VII 3,2 2,2
II 3,6 2,6
Читайте также:  Боль в позвоночнике при растяжении связок

Рис. 40.

Источник

Внутренние силы при растяжении-сжатии

Центральное растяжение-сжатие возникает в случае, когда на концах стержня вдоль его оси действуют две равные противоположно направленные силы. При этом в каждом сечении по длине стержня возникает внутреннее усилие (продольная сила$N$ кН), которая численно равна сумме всех сил, которые действуют вдоль оси стержня и расположены с одной стороны от сечения.

продольная сила

Из условий равновесия отсеченной части стержня $N = F$.

Продольная сила при растяжении считается положительной, при сжатии – отрицательной.

Пример определения внутренних сил.

Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения.

Продольная сила при растяжении 

Участком нагружения считают часть бруса между внешними силами.

На представленном рисунке 3 участка нагружения.

Воспользуемся методом сечений и определим внут­ренние силовые факторы внутри каждого участка.

Расчет начинаем со свободного конца бруса, что­бы не определять величины реакций в опорах.

Продольная сила положи­тельна, участок 1 растянут.

Продольная сила положительна, участок 2 растянут.

Продольная сила отрицательна, участок 3 сжат.

Полученное значение N3 равно реакции в заделке.

Под схемой бруса строим эпюру продольной силы (рис. 20.2, б).

Эпюрой продольной силы называется график распределения продольной силы вдоль оси бруса.

Ось эпюры параллельна продольной оси.

Нулевая линия про­водится тонкой линией. Значения сил откладывают от оси, положительные — вверх, отрицательные — вниз.

В пределах одного участка значение силы не меняется, поэто­му эпюра очерчивается отрезками прямых линий, параллельными оси Oz.

Напряжения. Действующие и допускаемые напряжения

Величина внутренней силы дает представление о сопротивлении поперечного сечения в целом (интегрально), но не дает представления об интенсивности работы материала в отдельных точках сечения. Так, при равной продольной силе материал в стержне с большим сечением будет работать менее интенсивно, менее напряженно чем меньший.

Напряжения – внутренние силы, приходящиеся на единицу площади сечения. Напряжения, направленные перпендикулярно (по нормали) к сечению называются нормальными.

Продольная сила при растяжении

$sigma  = frac{N}{A}$

Единицы измерения напряжений — Па, кПа, МПа.

Знаки напряжений принимают так, как и для продольной силы.

Действующие напряжения — напряжения, которые возникают в рассматриваемом сечении.

Любой стержень в момент разрушения имеет определенные напряжения, которые зависят только от материала стержня и не зависят от площади сечения.

Допускаемые напряжения $left[ sigma  right]$ – такие напряжения, которые не должны быть превышены в запроектированных конструкциях. Допустимые напряжения зависят от прочности материала, характера его разрушения, степени ответственности конструкции.

Принцип Сен-Венана: в сечениях, достаточно удаленных от места приложения нагрузки, распределение напряжений не зависит от способа приложения нагрузки, а зависит только от его равнодействующей.

то есть, распределение напряжений в сечении I-I для трех различных случаев, показанных на рисунке, принимается одинаковым.

иллюстрация принципа Сен-Венана

Рисунок — иллюстрация принципа Сен-Венана

Абсолютная и относительная деформация

При растяжении возникает удлинение стержня – разница между длиной стержня до и после погрузки. Эта величина называется абсолютной деформацией.

$Delta l = {l_1} — l$

Относительная деформация – отношение абсолютной деформации к первоначальной длине.

$varepsilon  = frac{{Delta l}}{l}$

$sigma  = E cdot varepsilon $

Таблица — физико-механические характеристики материалов

Материал

Модуль упругости, х1010 Па

Коэффициент Пуассона

Сталь

19 – 21

0,25 – 0,33

Чугун

11,5 – 16

0,23 – 0,27

Медь, латунь, бронза

10

0,31 – 0,42

Алюминий

7

0,32 – 0,36

Кирпичная кладка

0,3

0,2

Бетон

1 – 3

0,1 – 0,17

Каучук

0,0008

0,47

Источник