Прочность при растяжении бронзы

Основные характеристики механических свойств сплавов цветных металлов

  • E — модуль упругости — коэффициент пропорциональности между нормальным напряжением и относительным удлинением;
  • G — модуль сдвига (модуль касательной упругусти) — коэффициент пропорциональности между касательным напряжением и относительным сдвигом;
  • μ — коэффициент Пуассона — абсолютное значение отношения поперечной деформации к продолной в упругой области;
  • σт — предел текучести (условный) — напряжение при котором остаточная деформация после снятия нагрузки составляет 0,2%;
  • σв — временное сопротивление (предел прочности) — прочность на разрыв;
  • δ — относительное удлинение — отношение абсолютного остаточного удлинения образца после разрыва к начальной расчётной длине;
  • твёрдость (HB, HRC, HV).

Механический свойства алюминиевых сплавов

Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М — мягкий, отожжённый; П — полунагартованный; Н — нагартованный; Т — закалённый и естественно состаренный; Т1 — закалённый и искусственно состаренный на высокую прочность; Т2 — закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 — аналогично Т2 с улучшенными свойствами. Буква «ч» в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей).

Механические свойства алюминиевых деформируемых сплавов

E = 70…72 ГПа, G = 27…28 ГПа, коэффициент Пуассона μ = 0,31…0,33.

Система легирования Сплав, состояние ПолуфабрикатПредел прочности σв, МПа Предел текучести σт, МПа Твёрдость HB, МПа
Al — MgАМг5МПруток, штамповка300160HB 650
Al — MgАМг6МПоковка300150
Al — MgАМг6НЛист400300

Механические свойства титановых сплавов

E = 110…120 ГПа, G = 42…45 ГПа, коэффициент Пуассона μ = 0,31…0,34.

Система легирования СплавПолуфабрикатПредел прочности σв, МПа Предел текучести σт, МПа
ВТ1-199,04% TiСплав малой прочности после отжига.450-600380-500
Ti — AlВТ5Среднепрочный сплав после отжига.750-950650-700
Ti — Al — VВТ6Высокопрочный сплав после закалки и старения.11501050

Механический свойства медных сплавов

Медные сплавы разделяются на две основные группы: латуни и бронзы. Латуни — сплавы, легированные цинком. Различают простые и специальные латуни.

Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире — процентное содержание каждого легирующего элемента. Бронзы — сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях. Сплавы на основе олова или свинца — баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.

Механические свойства деформируемых латуней

E = 105…115 ГПа.

Тип латуни Марка латуни СостояниеПредел прочности σв, МПа Относительное удлинение δ, % Твёрдость HB, МПа
ПростаяЛ96, Л90Мягкое состояние240-26050HB 550
ПростаяЛ96, Л90Твёрдое состояние450-4702,5HB 1350
АлюминиеваяЛАЖ60-1-1Мягкое состояние45050HB 550
АлюминиеваяЛАЖ60-1-1Твёрдое состояние7008HB 1700
ОловянистаяЛО90-1Мягкое состояние28045HB 570
ОловянистаяЛО90-1Твёрдое состояние5204,5HB 1450
СвинцоваяЛС74-3, ЛС64-2, ЛС63-3Мягкое состояние300-40040-60HB 500-700
СвинцоваяЛС74-3, ЛС64-2, ЛС63-3Твёрдое состояние550-7002-6HB 1000-1200

Механические свойства деформируемых бронз

E = 92…130 ГПа.

БронзаСостояниеПредел прочности σв, МПа Относительное удлинение δ, % Твёрдость HB, МПа
БрАМц9-2Мягкое состояние45030HB 1100
БрАМц9-2Твёрдое состояние8004HB 1800
БрАЖ9-4Мягкое состояние45040HB 1100
БрАЖ9-4Твёрдое состояние7004HB 2000

Механические свойства медно-никелевых сплавов

E = 120…145 ГПа.

НазваниеСплавСостояниеПредел прочности σв, МПа Относительное удлинение δ, %
МельхиорМНЖМц30-0,8-1Мягкое состояние40045
МельхиорМНЖМц30-0,8-1Твёрдое состояние6004
МельхиорМН19Мягкое состояние35040
МельхиорМН19Твёрдое состояние5504
КопельМНМц43-0,5Мягкое состояние42038
КопельМНМц43-0,5Твёрдое состояние6503,5
КонстантантМНМц40-1,5Мягкое состояние43028
КонстантантМНМц40-1,5Твёрдое состояние6702,5

12.09.2020

Источник

Стандарт устанавливает химический состав и механические свойства безоловянных бронз предел прочности от 58,7 до 607 МПа (от 6 до 62 кгс/мм ), относительное удлинение 8 от 2 до 20 %, твердость от 245 до 1666 МПа (от 25 до 170 кгс/мм ).
[c.237]

Марка бронзы Предел прочности при растяжении в Удлинение в %, не менее Т вердость 00 Бринелю в кГ/мм , не менее
[c.25]

Оловянистые бронзы для нужд литейного производства предусмотрены ГОСТ 613-50 Бронзы оловянные вторичные литейные , дающим номенклатуру четверных и более сложных сплавов, содержащих наряду с оловом цинк и свинец, а также никель. Минимальные механические свойства отливок из вторичных литейных оловянистых бронз предел прочности при растяжении а р не ниже окГ/мм , удлинение 5 ке менее 4%, твердость не ниже Н 60.
[c.358]

С целью придания оловянистым литейным бронзам повышенной механической прочности их подвергают специальной термической обработке — гомогенизационному отжигу, в результате которого предел прочности оловянистой бронзы с 14% 5п возрастает с 250—300 до 330—350 Мн/зС, а удлинение — с 1—5 до 10—20%.
[c.250]

При использовании цементированных и закаленных до твердости HR 45 шлифованных и полированных червяков допускаемые напряжения изгиба для бронзовых и чугунных колес в связи с меньшим износом в зацеплении можно повысить на 25 %. 5. Предельные допускаемые напряжения при проверке на максимальную статическую или единичную пиковую нагрузку = 0,8 Tj. — для бронзы [ f-nl = 0,6 — для чугуна, где аь — предел прочности при растяжении.
[c.236]

Проверка на прочность ступиц стальных зубчатых колес не обязательна, поскольку во всех реальных случаях эквивалентные напряжения не превышают 0,8О[. Нельзя применять соединения для посадки на валы чугунных зубчатых колес или червячных колес с чугунными центрами, так как напряжения в те.те ступицы превышают предел прочности чугуна на разрыв. Поэтому формулы (3.12).. . (3.14) применяют для проверки прочности охватывающей детали из бронзы, например венца червячного колеса.
[c.276]

Наименование бронзы Марка Способ литья и состояние заготовки Предел прочности, Предел текучести, ат Относительное удлинение при % Твер- дость, ИВ
[c.214]

Предел прочности стеклянного волокна увеличивается при уменьшении его диаметра, при диаметрах порядка 0,01 мм он становится равны.м пределу прочности бронзы (см. 6-16).
[c.78]

Читайте также:  Что поможет от растяжения связок голеностопы

Олово — серебристо-белый металл, обладающий ясно выраженным кристаллическим строением. При изгибе прутка олова слышен треск, вызываемый трением кристаллов друг о друга. Олово — мягкий, тягучий металл, позволяющий получать путем прокатки тонкую фольгу. Предел прочности при растяжении белого олова колеблется от 16 до 38 МПа. Кроме обыкновенного белого олова, кристаллизующегося в тетрагональной системе, существует серое порошкообразное олово (плотность 5,6 Мг/м ). При сильном морозе на белом олове появляются серые пятна (выделение серого олова), получившие название оловянной чумы. При нагреве серое олово снова переходит в белое. Если нагреть олово до температуры выше 160 °С, оно переходит в третью (ромбическую) модификацию и становится хрупким. При нормальной температуре олово на воздухе не окисляется, вода на него не влияет, а разведенные кислоты действуют очень медленно. Олово используют в качестве защитных покрытий металлов (лужение) оно входит в состав бронз и припоев. Тонкая оловянная фольга (6—8 мкм), применяемая в производстве
[c.217]

Марка бронзы Диаметр прутка Способ изготовления Предел прочности при растяжении в кГ/мм Относительное удлинение бю в % Плот- ность Твердость 0/1000/30
[c.57]

Бериллиевая бронза обладает рядом свойств, делающих ее весьма ценным материалом для приборостроения. Она имеет высокие пределы прочности, упругости, текучести, усталости, обладает высоким сопротивлением ползучести, циклической прочностью, твердостью, износоустойчивостью, отличается хорошими электро- и теплопроводностью, сопротивлением коррозионной усталости и коррозии.
[c.388]

При скорости скольжения менее 2 м/сек и при больших нагрузках можно применять твёрдую бронзу, в частности, железо-алюминиевую АЖ 9-4 по закалённой стали, а при меньших нагрузках — чугун по стали или чугун по чугуну. Следует иметь в виду, что бронзы с пределом прочности свыше 40 кг/жл 2 при скорости скольжения более 1 м/сек можно применять только в тех случаях, когда закалённый до 45 червяк тщательно шлифован
[c.353]

Бронза бериллиевая относится к сплавам, наиболее эффективно изменяющим свои свойства при термической обработке. По сравнению с другими бинарными медными сплавами бериллиевая бронза характеризуется максимальными показателями механических свойств после термической обработки (закалки и отпуска) сплава. Температура закалки бериллиевой бронзы, содержащей около 3% Be, — 800 — 850° С, температура отпуска 325—350° С. После закалки бронза обладает высокой вязкостью (относительное удлинение около 25о/о) после отпуска предел прочности при растяжении liO кг мм К твёрдость до Я =400 и относительное удлинение 2—3%.
[c.556]

Марка бронзы Способ отливки Предел прочности при растяжении 3 п ) в кГ/мм Относительное удлинение о в Wo Твердость
[c.573]

Для быстроходных передач с колесами из бронз с пределом прочности при растяжении а,ф > 35 кГ/мм при расчетах на изгиб коэффициент долговечности может быть определен по формулам при расчете на из1 иб
[c.690]

Колеса из твердых бронз с пределом прочности при растяжении > 35 кГ мм»
[c.691]

Предел прочности при срезе бронзы, литой в кокиль, Хер, МПа 333
[c.198]

Бронза сваривается с углеродистой или аустенитной сталью аргонодуговой сваркой неплавящимся электродом, а тантал с титаном — в камерах с контролируемой атмосферой. Предел прочности соединения по бронзе 490 МПа, при закалке бронзы 605 МПа (закалка до сварки).
[c.508]

Эти сплавы при сварке с медью М3 обеспечивают предел прочности со ед1П[сиия 22—22,5 кгс/мм и угол изгиба 140—180 , а при сларко с бронзой 26—28 кгс/мм и угол изгиба 100—160 . В прослой] е по линии соедииения твердость достигает 470— 480 кгс/мм» при твердости бронзы БрХ 0,8 120 (ас/ыл .
[c.389]

На рис. 30 показано изменение предела прочности и относительного удлинения по высоте отливки типа плиты (15X80X150 мм), имеющей прибыль толщиной 30 и общей высотой 60 мм. Отливки изготовляли из бронзы Бр. ОЦС5-5-5 в песчаных формах под давлением сухого азота О—1,5 МН/м [66]. Видно, что вблизи прибыли указанные свойства несколько ниже, чем вблизи нижнего торца. Повышение давления приводит к выравниванию свойств.
[c.64]

Вместе с тем есть данные, которые говорят о том, что повышение давления от 10 до 90 МН/м приводит к снижению на 10—12% предела прочности при растяжении бронзы Бр. ОСН10-2-3 и на 20% относительного удлинения [87]. Действительно, снижение механических свойств этой и других бронз наблюдается при малых давлениях прессования, когда затвердевшая корка не деформируется, в результате чего в слитках обнаруживается усадочная пористость. Повышение давления до оптимальных значений, как правило, приводит к росту физико-механических и специальных свойств металлов и сплавов.
[c.126]

Микроструктура латуни ЛМцА57-3-1 характеризуется наличием а- и р-фаз. Упрочнению способствует увеличение количества р-фазы в структуре затвердевающих под поршневым давлением слитков. При увеличении диаметра слитка предел прочности снижается, а относительное удлинение возрастает (рис. 65,а,б), что связано с уменьшением скорости охлаждения массивных слитков, укрупнением зерна и увеличением количества а-фазы в их структуре, а также лучшей пропрессовкой. Подобная зависимость характерна и для бронзы Бр. АЖ9-4Л.
[c.127]

Предел прочности бронзы Бр. ОФ10-1 практически не изменяется (рис. 65,в), а относительное удлинение повышается (рис. 65, г) с увеличением диаметра слитка. Из указанных выше факторов в данном случае наибольшее влияние, по-видимому, оказывает снижение скорости охлаждения при увеличении диаметра слитка, а следовательно, и более активное воздействие давления во время затвердевания последнего. Это подтверж-
[c.127]

У сплавов с широким интервалом кристаллизации можно добиться увеличения механических свойств за счет удлинения времени выдержки слитка под давлением. На рис. 66 приведены графики изменения предела прочности и относительного удлинения бронзы Бр. ОФ10-1 в верхнем и нижнем сечениях слитков (D = =55 мм, Я/D=5,5) в зависимости от отношения XvJR (тп— время прессования, с, R — радиус слитка, мм). Видно, что увеличение xJR способствует повышению а и б, но, несмотря на это, различие в свойствах по высоте практически сохраняется. При уменьшении Я/D это различие также уменьшается. Для латуни ЛМцА57-3-1 различие в свойствах по высоте аналогичных слитков меньше.
[c.128]

Здесь 0в — предел прочности бронзы при растяжении (см. табл. 15.1). Большие значения [а]//о принимают для червяков с твердостью витков 45ННСэ.
[c.220]

Марганцевые мельхиоры — сплав МН-Мц 20-20 превосходят бериллиевую бронзу по механическим свойствам, особенно при повышенных температурах. При 400° С сплав МН-Мц 20-20 обладает пределом прочности = 109 кПмм при 6 = = 9%, но он склонен к коррозионному растрескиванию и межкристаллитному разрушению.
[c.278]

Разбухание (%) в морской воде за 24 ч предельное Предел прочности, кгс/см при сжатии вдоль волокна при статическом изгибе Ударная вязкость перпендикулярно волокнам, кгс-см/си Твердость торца, кгс/ьпи Коэффициент трения при работе о бронзой ОЦ10-2 при смачи-ванип морской водой ( =0,4 м/с) Максимальная температура, С Максимальное допустимое давление, кгс/см
[c.222]

Читайте также:  Диаграмма растяжения и касательная к нему

Материалы червяков и червячных колёс. Червячное колесо. При скорости скольжения свыше 2 м/сек в качестве материала червячного колеса обычно применяется фосфористая бронза ОФ 10-1. Можно также применять малооловянистые и безоловянистые бронзы с пределом прочности на разрыв менее 30—35 KzjMjifi, а также алюминиевые, магниевые и цинковые сплавы. При повышенных нагрузках (мощностях) можно применять фосфористую бронзу, отлитую в кокидь, фосфористую бронзу, ОНФ, отлитую центробежным способом, и никелевую бронзу или сурьмяно-никелевую бронзу (7 — в /о Sb
[c.353]

Плавка чугуна нирезист производится в пламенных печах или в вагранках. По коррозио-стойкости и механическим свойствам (см. табл. 64 — 66) отливки близки к латуням и бронзам и превышают последние по износостойкости. Благодаря аустенито-графитной структуре в сплаве удачно сочетаются коррозиостойкость с жароупорностью и сохраняются прочность и плотность при длительных нагревах до высоких температур (при температуре 450° С предел прочности при растяжении падает всего на 3 кг мм , при 700° С — примерно на 50%).
[c.56]

Фторопласт-4 имеет очень низкий коэффициент трения при работе без смазки ( 0,04) и относительно высокую теплостойкость (свыше 250 С), однако применение фторопласта в чистом виде для подшипников ограничено малым пределом прочности на сжатие. Поэтому при нагрузках свыше 5 кГ1см фторопласт используется для пропитки пористых вкладышей (из бронзы и других материалов).
[c.324]

Предел прочности при растяжении в кГ/мм вр Относительное удлинение 6 в о/о Предел прочности на срез в кГ/мм Ударная вязкость в кГм/см Относительное сужение в °/о Коэффициент трения Износ бронзы в МГf M KM
[c.571]

Для быстроходных червячных передач с колесами из чугуна К = Киас=- К с колесами из твердых бронз с пределом прочности при растяжеии11апр>35 кГ/мм пои расчетах по контактным напряжениям Д — 1.
[c.690]

Колеса из оловяиистых и безоловянистых бронз с пределом прочности при растяжении
[c.691]

Металл при центробежном литье уплотняется и получает мелкозернистую структуру, благодаря чему повыщается его прочность. Например, предел прочности червячного венца из бронзы марки Бр.ОЦС 6-6-3 при литье в песчаную форму, в кокиль и при центробежном литье соответственно составляют 15—20 18—22 22—28 кПмм .
[c.69]

Анализ соединений, титаиа через покрытие с мед1,ю и никелем, образующих эвтектику с титаном, показал, что при диффузионной найке предел прочности соединения при испытании на срез в 3—4 раза выше, чем при использовании серебра. В процессе пайки в шве образуются твердые растворы на основе титана. Ширина зон, структура и их свойства зависят от режима пайки [7 ,В случае использования медного покрытия (0,015 мм) при 1000 °С после 40 мии выдержки прослойка эвтектики исчезает. Шов состоит из твердого раствора меди в а = Ti и включений Ti u Прочность стыковых соединений достигает 392—588 МПа, температура распайки 1190°С. При пайке коррозионно-стойкой стали СН-2А с бронзой Бр.Х08 на сталь наносили никелевое покрытие (6—8 мкм), на бронзу слой серебра (толщина 5—
[c.53]

Эти сплавы при сварке с медью М3 обеспечивают предел прочности соединения 220. .. 225 МПа и угол изгиба 140. … 180°, а при сварке с бронзой 260. .. 280 МПа и угол изгиба 100. .. 160°. В прослойке по линии соединения твердость достигает 4700. .. 4800 HV при твердости бронзы БрХ0,8 1200 HV.
[c.511]

Машиностроение Энциклопедический справочник Раздел 3 Том 6
(1948) — [

c.485

]

Источник

14Ноя

  • By: Семантика

  • Без рубрики

  • Comment: 0

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

КлассВременное сопротивление, Н/мм2
265430
295430
315450
325450
345490
355490
375510
390510
440590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Источник

Читайте также:  Массаж для рук при растяжении