Прочность на растяжение сосудов

Во время движения и особенно во время растягивания многочисленные структуры тела подвергаются воздействию различных сил. В первую очередь это соединительные ткани (например, сухожилия, связки и фасции) и мышцы. Однако не следует забывать и о двух других категориях структур — сердечно-сосудистой и нервной системах. В следующих разделах мы проанализируем влияние растягивания на эти структуры.

Анатомия сердечно-сосудистой системы.Сердечно-сосудистая система состоит из многообразия кровеносных сосудов, по которым движется кровь через все тело. Существует три основных вида кровеносных сосудов: артерии, вены и капилляры.

Артерия — кровеносный сосуд, по которому кровь идет от сердца. Все артерии (за исключением легочной и ее ответвлений) переносят насыщенную кислородом кровь. Артериальный сосуд, имеющий диаметр меньше 0,5 мм, называется артериолой. В зависимости от превалирующего компонента ткани в стенках артерий их можно разделить на эластичные и мышечные. Эластичными артериями являются такие крупные сосуды, как аорта, сонная, подключичная и подвздошная артерии. Подавляющее большинство артерий относится к категории мышечных. Посредством сужения и расширения артерий осуществляется регуляция кровотока (рис. 5.14).

Вена — кровеносный сосуд, по которому кровь поступает к сердцу. Все вены (за исключением легочной) содержат дезоксигенированную кровь. Небольшие вены называются венудами.. Главное различие между венами и артериями — сравнительная слабость средней оболочки стенок вен. Значительно меньшее содержание в них мышечных и эластичных во-

Наука о гибкости

Прочность на растяжение сосудов БОЛЬШИЕ ВЕНЫ

Прочность на растяжение сосудов

ВЕНЫ СРЕДНЕГО РАЗМЕРА (диаметр 1-10 мм)
Адвентициальная оболочка

Прочность на растяжение сосудов Средняя оболочка

Интима / Капилляры

Клапаны в венах (диаметр >2 мм)

БОЛЬШИЕ АРТЕРИИ (эластичные, проводящие)

Прочность на растяжение сосудов Адвентициальная оболочка

Средняя «»‘ ^ Интима оболочка Кровоток

АРТЕРИИ СРЕДНЕГО

РАЗМЕРА (мышечные)

(диаметр 0,3-10 мм)

Прочность на растяжение сосудов Адвентициальная

— оболочка

_ Внешняя

эластичная

мембрана

Средняя оболочка Внутренняя эластичная мембрана

Главная артерия

Рис. 5.14.Структурные характеристики основных сегментов кровеносных сосудов

млекопитающих

локон связано с намного более низким давлением венозной крови. Кроме того, в отличие от артерий, большинство вен имеют клапаны.

Капиллярами называются микроскопические кровеносные сосуды, соединяющие артериолы с венулами. Их стенки состоят из одного слоя эндо-телиальных клеток. Средний диаметр капилляров небольшой, от 7 до 9 мкм; длина колеблется от 0,25 до 1 мм. Капилляры выполняют разнообразные функции: транспорт крови со всеми необходимыми ее компонентами и их обмен с окружающими тканями, поддержание нормального давления и кровообращения; кроме того, они являются и резервуаром крови.

Растяжение кровеносных сосудов.Когда кровеносные сосуды подвергаются нагрузке (растяжение кровотоком или влияние мышечного растяжения на кровеносные сосуды), они проявляют типичные упруго-вязкие свойства в ответ на постоянное изменение нагрузки, сопровождающее каждый сердечный цикл.

Влияние длины саркомера скелетной мышцы на общую длину капилляров изучал Эллис с коллегами (1990), использовав для этого длинный разгибатель пальцев крысы. Данные, полученные из шести капилляров, «показали, что четыре (сосуда) оказались растянутыми в такой же степени, как и мышца, один был растянут больше, и один — меньше». Было высказано предположение, что различия в степени растяжимости капилляров могут быть обусловлены различиями в диаметре сосудов, толщине стенок и степени привязывания к соседним мышечным клеткам.

Глава 5 ■ Механические и динамические свойства мягких тканей

Прочность на растяжение сосудов

Прочность на растяжение сосудов

Прочность на растяжение сосудов

Наука о гибкости

Эпиневрий

Эпиневрий — внешняя фиброзная оболочка нерва из плотной соединительной ткани. Эта наиболее крайняя оболочка окутывает весь нерв и лежит между пучками волокон. Она содержит волокна соединительной ткани, кровеносные сосуды и небольшие нервные волокна, иннервирую-щие сосуды. Компоненты эпиневрия, наиболее заметными из которых являются коллагеновые фибриллы, ориентированы преимущественно продольно. Эпиневрий включает также эластичные волокна.

Периневрии

Периневрии расположен в глубине эпиневрия и отдельно окутывает каждый пучок нервных волокон. Таким образом, каждый пучок окружен периневрием, включающим 3-10 концентрических слоев клеток. Количество слоев зависит от размера нервного пучка и его удаления от ЦНС. Клетки в этих слоях плотно соединяются, превращая периневрии в барьер для прохождения большинства макромолекул. Коллагеновые фибриллы здесь более тонкие, чем в эпиневрий, и содержат меньший процент эластичных волокон.

Эндоневрий

Эндоневрий представляет собой наиболее глубоко расположенную нервную оболочку, окутывающую каждое отдельное нервное волокно. Он состоит из тонкого слоя коллагеновых фибрилл, ориентированных в основном продольно. Диаметр этих фибрилл практически такой же, как фибрилл, находящихся в периневрии.

Растягивание нервов.Исследования поведения периферических нервов, подвергающихся растяжению (растягивающей нагрузке), начали проводить еще в конце XIX ст. Несмотря на это, наши сведения о биомеханических свойствах периферических нервов, а также о пределе растягивания нерва весьма ограничены.

Результаты исследований показывают, что в хронически травмируемых нервах могут изменяться механические свойства, например увеличивается жесткость (Beel, Groswald, Luttges, 1984).

Если нерв подвергать постепенно увеличивающейся растягивающей нагрузке, наблюдается линейная взаимосвязь между нагрузкой и удлинением до определенного момента, когда нерв прекращает вести себя как эластичная структура (Sunderland, 1978, 1991). Основным компонентом, сообщающим эластичность нервному стволу и обусловливающим его предел прочности, является периневрии. Диапазон эластичности составляет 6-20 % по сравнению с длиной в покое.

Если растягивание продолжать после преодоления предела эластичности, прямо пропорциональная взаимосвязь между деформацией и силой исчезает. По мере прикладывания сил большей величины кривая выравни-

Глава 5 • Механические и динамические свойства мягких тканей

вается до уровня максимальной нагрузки или предела прочности, т. е. достижения разрыва.

Данные, касающиеся величины растяжения, вызывающей структурные изменения, являются весьма немногочисленными, а показатели удлинения колеблются от 11 до 100 %. Эти структурные изменения в значительной мере зависят от величины и характера деформирующей силы, а также от продолжительности ее воздействия.

Свойства напряжения — деформации периферического нервного ствола.Сандерленд и Бредли (1961) провели серию экспериментов, изучая явление напряжения-деформации в растянутых периферических нервах человека, подвергавшихся постепенно увеличивающимся нагрузкам вплоть до механического повреждения. У лиц в возрасте 30-50 лет были взяты и сразу же подвергнуты анализу образцы срединного (п=24), локтевого (24), медиального подколенного (13) и латерального подколенного (15) нервов спустя 12 часов после смерти.

Читайте также:  Растяжение связок на шпагат

Проведенные тесты позволили получить следующую информацию о диапазоне максимальной нагрузки (кг):

срединный 7,3-22,3

локтевой 6,5-15,5

медиальный подколенный 20,6-33,6

латеральный подколенный 11,8-21,4.

Максимальный предел прочности нервного ствола

Нервы не являются гетерогенными структурами и не ведут себя как совершенные цилиндры. Диапазон максимального растягивающего напряжения (кг-мм~2) определяли на площади поперечного сечения нервного ствола:

срединный 1,0-3,1

локтевой 1,0-2,2

медиальный подколенный 0,5-1,8

латеральный подколенный 0,8-1,9.

Максимальное удлинение нервного ствола

Если при растягивании нерва не был превышен его предел эластичности, то нерв восстанавливает свою исходную длину. Исследования также показывают, что при устранении нагрузки нерв восстанавливает и свои эластичные свойства. Если же предел эластичности превышен, нерв не восстанавливает свою исходную длину, а оказывается деформированным. Тесты выявляют линейную (эластичную) взаимосвязь между нагрузкой и удлинением в диапазоне удлинения, которую можно представить следующим образом (%):

6-ш

Наука о гибкости

срединный 6-20,

локтевой . 8-21,

медиальный подколенный 7-21,

латеральный подколенный 9-22.

Процент удлинения при механическом повреждении

Максимальное удлинение при пределе эластичности составляет около 20 %. При максимальном удлинении порядка 30 % происходит полный механический разрыв. Удлинение при механическом повреждении нервного

ствола как процент от длины в покое составляло (%):

срединный 7-30,

локтевой 9-26,

медиальный подколенный 8-32,

латеральный подколенный 10-32.

Значение нервного растяжения для специалистов в области медицины.Ридевик с коллегами (1990) выяснили некоторые факторы, имеющие практическое значение для специалистов в области медицины. Во-первых, было установлено, что при механическом повреждении нервный ствол оказывается в целом неповрежденным, несмотря на многочисленные разрывы периневральных оболочек. «Таким образом, чисто визуально невозможно определить структурную целостность нервного ствола». Кроме того, разрывы периневральных оболочек имеют место не в одном участке. Этот факт «указывает на то, что травмы от растяжения периферического нерва могут быть не локальными, а происходить вдоль всей длины нерва» (рис. 5.16).

Прочность на растяжение сосудов

Внутриневральный капиллярный кровоток.Важным последстви
ем растягивания нерва является воздействие на внутриневральный капил
лярный (микроваскулярный) кровоток
(рис. 5.17). При растяжении нерва площадь
его поперечного сечения постепенно
уменьшается. Это изменение приводит к
сжатию, вызывающему дальнейшую де
формацию нервного волокна, а также нару
шение его кровоснабжения. Важность
адекватного кровоснабжения для функции
нерва хорошо известна. Поэтому можно
ожидать, что растягивание, отрицательно
влияющее на внутриневральный капилляр
ный кровоток, нарушает нервную функ
цию. Исследования, проведенные Лунд-
борг (1975), Лундборг и Ридевик (1973) и
Рис. 5.16. Поведение пучка и нахо- Огата и Наито (1986), показали нарушение
дящихся в нем нервных волокон внуТриневрального капиллярного кровото-
нервного ствола, растянутых до п _. „

точки механического повреждения каПРИ удлинении нерва на 8%. Полная

Глава 5 ■ Механические и динамические свойства мягких тканей

Прочность на растяжение сосудов

Рис. 5.17. Архитектура микрососудов внутри пучка, определенная в результате исследований периневрия, артериолы, венулы, капилляров. Обратите внимание на капиллярные петли, которые иногда располагаются в плоскостях, перпендикулярных продольной оси нерва. Стрелками отмечено направление кровотока

внутриневральная ишемия (снижение кровоснабжения) возникала при удлинении на 15 %. После расслабления, следовавшего за растяжением, кровообращение восстанавливалось.

Влияние растягивания на нервную передачу.Другим немаловажным последствием растяжения нервов является нарушение электрической проводимости. Нарушение проводимости наблюдали при растягивании на 6-100 %, в зависимости от вида подопытного животного. Не так давно Уолл с коллегами (1992) высказали предположение, что начальное (раннее) нарушение проводимости обусловлено не ишемией, а механической деформацией.

Защитные структуры нервных стволов.Каким образом периферические нервы ног позволяют человеку стоять прямо, наклоняться вперед, не сгибая ноги в коленях, и упираться ладонями в пол? Ведь во время выполнения этих движений ткани, вовлеченные в растягивание, иногда удлиняются до 5 см! Ответ заключается в следующем. Для большинства периферических нервов характерны три особенности, защищающие их от физической деформации: ненатянутость, ход (расположение) нервов относительно суставов и эластичность.

Ненатянутость нервного ствола и нервных волокон

Нервный ствол проходит волнообразно. Такой же волнообразный ход в оболочках эпиневрия характерен и для пучков волокон, а также для каждого нервного волокна внутри пучка. Если напряжение небольшое или отсутствует вообще, нервы сокращаются подобно гармошке (J.W.Smith, 1966). Вследствие этого длина нервного ствола и нервных волокон между любыми двумя фиксированными точками конечности значительно превышает линейное расстояние между этими точками (рис. 5.18).

При начальном растягивании волнистость нерва устраняется. По мере продолжения растягивания она исчезает в пучках и, наконец, в отдельных нервных волокнах. Таким образом, только при этом оконча-

7*

Наука о гибкости

Прочность на растяжение сосудов

тельно исчезает волнистость и нервные волокна подвергаются напряжению. Если растягивание продолжается, проводимость в нервных волокнах постепенно ухудшается и затем полностью нарушается до тех пор, пока не происходит разрыв нервных волокон внутри пучка. В последнюю очередь структурным повреждениям подвергается пери-неврий.

Рис. 5.18. Диаграмма, иллюстрирующая характерную волнистость нервов, пучков и нервных волокон, которая защищает нервы при их растягивании во время движения конечностей с полной амплитудой

Важность этой волнистой системы трудно переоценить. Как отмечает Сандерленд (1991), «такая волнистость позволяет абсорбировать и нейтрализовать силы тяги, производимые во время движений конечности; таким образом, нервные волокна оказываются постоянно защищенными от перерастяжения».

Ход нерва относительно суставов

Вторым важным свойством, обеспечивающим защиту нервов, является ход, или расположение, нерва относительно суставов. Все нервы, за исключением двух, пересекают сгибательный аспект суставов («внутреннюю часть» сустава, когда он согнут). Поскольку диапазон сгибания сустава намного превышает диапазон выпрямления, нерв, пересекающий сгибательный аспект сустава, остается в расслабленном состоянии в момент сгибания и только немного растягивается при выпрямлении. С другой стороны, нерв, пересекающий выпрямляющий аспект сустава, находится в расслабленном состоянии во время выпрямления и подвергается значительному напряжению во время сгибания. Вполне понятно, что нервы, пересекающие выпрямительный аспект сустава, имеют преимущество с точки зрения воздействия на них сил, генерируемых во время движений конечностей.

Читайте также:  Какую мазь при растяжении связок можно беременным

Исключение составляют локтевой нерв, пересекающий разгибательный аспект локтевого сустава, и седалищный нерв в точке, в которой он пересекает разгибательный аспект тазобедренного сустава. Вследствие этого оба нерва периодически подвергаются чрезмерному напряжению при полном сгибании. Так как движения, включающие сгибание туловища вперед при выпрямленных коленях, встречаются во многих видах спорта и физической деятельности, этот факт, безусловно, заслуживает внимания.

Сандерленд (1991) указывает, что в месте пересечения седалищным нервом разгибательной части тазобедренного сустава эпиневральная ткань

Глава 5 • Механические и динамические свойства мягких тканей

составляет до 88 % площади поперечного сечения нерва. Он выдвигает предположение, что эта структура, по-видимому, является специальным защитным механизмом.

Эластичность нервных стволов

Третьим свойством, предохраняющим нерв от деформации, является его эластичность. Эластичность — это сопротивление материала растяжению, т. е. свойство, позволяющее ему восстановить свою первоначальную форму или размер. Основным компонентом, обусловливающим эластичность нервного ствола, является периневрий. Как свидетельствуют результаты исследований, диапазон эластичности периферических нервов составляет 6-20 %.

Факторы, ограничивающие эластичность и подвижность нервов. Периферические нервы проявляют такие качества, как прочность, эластичность и подвижность. Однако со временем эти свойства могут изменяться. Следующие факторы способны трансформировать механические характеристики нервных волокон:

• адгезия и образование рубцов;

• изменения соотношения коллагеновой и эластичной ткани нерва;

• деформации;

• травмы;

• швы.

Влияют ли тренировочные занятия на периферические нервы? На сегодняшний день мы не знаем, как влияют различные виды традиционных режимов и методов растягивания на силу, эластичность и подвижность периферических нервов, поскольку никаких исследований в этом направлении не проводилось.

ФАКТОРЫ,

Источник

14Ноя

  • By: Семантика

  • Без рубрики

  • Comment: 0

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

КлассВременное сопротивление, Н/мм2
265430
295430
315450
325450
345490
355490
375510
390510
440590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Источник

Читайте также:  Как снять боль при растяжении локтевого сустава