Прочность на растяжение и величину сил притяжения молекул

Прочность на растяжение и величину сил притяжения молекул thumbnail

Межмолекулярное взаимодействие — взаимодействие между молекулами и/или атомами, не приводящее к образованию ковалентных (химических) связей.

Межмолекулярное взаимодействие имеет электростатическую природу. Предположение о его существовании было впервые использовано Я. Д. Ван-дер-Ваальсом в 1873 году для объяснения свойств реальных газов и жидкостей. В наиболее широком смысле под ним можно понимать такие взаимодействия между любыми частицами (молекулами, атомами, ионами), при которых не происходит образования химических, то есть ионных, ковалентных или металлических связей. Иными словами, эти взаимодействия существенно слабее ковалентных и не приводят к существенной перестройке электронного строения взаимодействующих частиц.

На больших расстояниях преобладают силы притяжения, которые могут иметь ориентационную, поляризационную (индукционную) и дисперсионную природу (см. подробнее в статьях Силы Ван-дер-Ваальса и Дисперсионные силы). При усреднении по вращению частиц, происходящему вследствие теплового движения, потенциал межмолекулярных сил обратно пропорционален шестой степени расстояния, а ион-дипольных (как с постоянным, так и с наведенным диполем) — четвёртой степени. На малых расстояниях начинают преобладать силы отталкивания электронных оболочек частиц. Особым случаем является водородная связь — возникающее на малом расстоянии взаимодействие между атомом водорода одной молекулы и электроотрицательным атомом другой, когда эти атомы несут достаточно большой эффективный заряд.

Упаковку частиц и расстояние между ними в конденсированной фазе, определяющиеся равновесием между притяжением и отталкиванием, можно предсказать, исходя из ван-дер-ваальсовых радиусов составляющих молекулы атомов (ионных в случае ионов): расстояния между атомами разных молекул не должны превышать суммы радиусов этих атомов. Для моделирования межмолекулярных взаимодействий используют эмпирические потенциалы, среди которых наиболее известны потенциалы Леннард-Джонса (отталкивание описывается двенадцатой степенью обратного расстояния, притяжение — шестой) и Бакингема (с более физически обоснованным экспоненциальным отталкиванием), из которых первый более удобен для расчетов. В конденсированной фазе, где мультипольное разложение для молекул плохо применимо из-за близости молекул друг к другу, может применяться метод атом-атомных потенциалов, основанный на тех же потенциалах, но уже для парных взаимодействий атомов и с добавкой кулоновских членов, описывающих взаимодействие их эффективных зарядов.

Межмолекулярное взаимодействие, водородная связь[править | править код]

Дипольная молекула создает вокруг себя электростатическое поле и ориентирует остальные диполи системы, что приводит к снижению энергии. Рассчитанная П.Кизомом средняя энергия ориентационного диполь-дипольного взаимодействия между полярными молекулами составляет:

(формула 1) где — дипольный момент молекулы; r — расстояние между центрами молекул; k — константа Больцмана; T — температура по Кельвину.

Множитель (kT) в знаменателе отражает влияние флуктуации на ориентацию диполей вследствие теплового движения, которое возрастает с увеличением температуры. Кроме ориентационного, следует учитывать индукционный эффект (), то есть взаимодействие диполя с приведенным диполем, который, соответственно с П.Дебаем, равен:

(формула 2)

Ориентационные и индукционные силы возникают между полярными молекулами и не могут объяснить межмолекулярное взаимодействие между неполярными. Учитывание так сказать слабой квадруполь-квадруполь взаимодействия не решает проблему, тем более, что молекула типа и атомы инертных газов не имеют вообще квадрупольного момента (отметим, что квадрупольный момент (без дипольного) имеют молекулы типа квадруполями можно считать двухатомные гомоядерные молекулы — и т.д.).

Природа межмолекулярных сил в неполярных системах была определена Ф.Лондоном с помощью квантовой механики. Можно сказать лишь, что учитывание корреляции во время движения атомных электронов приводит к снижению энергии. Если движение электронов в разных атомах скоррелировано, то это также способствует снижению энергии. Атомы с подвижными электронами можно считать диполями, которые осциллируют с некоторой частотой . При синхронном движении электронов мгновенные диполи ориентируются всегда так, что это приводит к снижению энергии:

(формула 3)

Заменив на , где — энергия ионизации молекулы (атома), получим:

(формула 4) Эту формулу можно получить более последовательно (не применяя модель осциллирующих диполей) на основе теории возмущений.

Дж.Слетер и Дж.Кирквуд для взаимодействия многоэлектронных атомов вывели следующую формулу:

(формула 5) где N — количество электронов на внешней оболочке; m — масса электрона; е — его заряд.

Формулы (3) и (5) совпадают при N=1, если вместо подставить его выражение: Из приведенных формул можно сделать вывод о том, что основная характеристика, которая определяет величину сил Лондона, — это поляризованность () атомов (молекул). В связи с тем, что поляризованность тесно связана с коэффициентом преломления света и характеризует способность вещества к рассеиванию энергии (дисперсии) света, силы Лондона часто называют дисперсионными ().

Поляризованность зависит от размера частички, поэтому прочность молекулярных решеток должна возрастать с увеличением размеров атомов и молекул, которые взаимодействуют. Эта закономерность хорошо иллюстрируется увеличением температур кипения (аналогические зависимости наблюдаются для теплот и температур плавления, сублимации, испарения и т.д., то есть для величин, которые зависят от прочности молекулярных связей) в группе инертных газов в гомологическом ряду парафинов.

Атом Гелия настолько мал и дисперсионные силы при взаимодействии атомов Гелия такие слабые, что Гелий не может существовать в кристаллическом состоянии даже при обычном давлении и 0К. Причина этого — существование нулевой кинетической энергии, которая для гелия больше, чем энергия связи. Наличие кинетической энергии ядер в связанных атомах (при 0К) является следствием соотношения неопределенностей Гейзенберга.

Энергия связи для гелия кДж/моль, где m — масса атома Гелия.

Поэтому, и кристаллическое состояние не может реализоваться даже при 0К. Лишь при большом внешнем давлении гелий может перейти в кристаллическое состояние.

Все межмолекулярные взаимодействия (их часто объединяют общим названием — взаимодействие Ван дер Вальса) можно выразить в таком виде:

Ориентационное, индукционное и дисперсионное взаимодействия делают разный вклад в энергию связи. Для атомов и неполярных молекул и равны нулю и остается только дисперсионное взаимодействие. Вклад ориентационных и индукционных сил увеличивается с ростом дипольного момента молекул. В молекуле (1D-дебай= Кл * м) вносит 0,005%, а — 14,4%, — 4,2%; В — 3,3%, — 2,2%; — 14,4%, — 4,2%.

Благодаря приведенным формулам можно сделать вывод, что даже для очень полярных молекул дисперсионное взаимодействие делает огромный вклад.

См. также[править | править код]

  • Силы Ван-дер-Ваальса
  • Межатомное взаимодействие

Литература[править | править код]

  • [www.xumuk.ru/encyklopedia/2477.html Межмолекулярные взаимодействия] // Химическая энциклопедия. Т. 3. — М.: Большая Российская энциклопедия, 1992. С. 12-15.
  • Маррел Дж., Кеттл С., Теддер Дж. Химическая связь / Пер. с англ. С. В. Христенко. Под ред. И. В. Александрова. — М.: Мир, 1980.— 382 с.
  • Бараш Ю. С. «Силы Ван-дер-Ваальса» М.: Наука, 1988. 344с.
  • Каплан И. Г. «Введение в теорию межмолекулярных взаимодействий» М.: Наука, 1982. 312с.
  • Каплан И. Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчеты и модельные потенциал М.: БИНОМ. Лаборатория знаний, 2012. — 400 с. ISBN 978-5-94774-939-7
  • «Межмолекулярные взаимодействия; от двухатомных молекул до биополимеров» Пюльман Б. (ред) Пер. с англ., М.: Мир, 1981. — 592с.
  • Израелашвили Дж. Межмолекулярные и поверхностные силы. М.: Научный мир, 2011. — 456 с. ISBN 978-5-91522-222-8
Читайте также:  Растяжение связок ноги чем помочь

Ссылки[править | править код]

  • Межмолекулярное взаимодействие в ФЭ
  • [www.xumuk.ru/bse/1603.html Межмолекулярное взаимодействие] в БСЭ

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: тепловое движение атомов и молекул вещества, броуновское движение, диффузия, взаимодействие частиц вещества, экспериментальные доказательства атомистической теории.

Великому американскому физику Ричарду Фейнману, автору знаменитого курса «Фейнмановские лекции по физике», принадлежат замечательные слова:

– Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что — это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе … содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

В этих словах заключена суть молекулярно-кинетической теории (МКТ) строения вещества. А именно, основными положениями МКТ являются следующие три утверждения.

1. Любое вещество состоит из мельчайших частиц молекул и атомов. Они расположены в пространстве дискретно, то есть на некоторых расстояниях друг от друга.
2. Атомы или молекулы вещества находятся в состоянии беспорядочного движения(это движение называется тепловым движением), которое никогда не прекращается.
3. Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Эти положения являются обобщением многочисленных наблюдений и экпериментальных фактов. Давайте рассмотрим подробнее эти положения и приведём их опытное обоснование.

Например, — это молекула воды, состоящая из двух атомов водорода и одного атома кислорода. Разделив её на атомы, мы перестанем иметь дело в веществом под названием «вода». Далее, разделив атомы и на составные части, мы получим набор протонов, нейтронов и электронов и тем самым потеряем информацию о том, что поначалу это были водород и кислород.

Атомы и молекулы называются для краткости просто частицами вещества. Чем именно является частица — атомом или молекулой — в каждом конкретном случае установить нетрудно. Если речь идёт о химическом элементе, то частицей будет атом; если же рассматривается сложное вещество, то его частица — это молекула, состоящая из нескольких атомов.

Далее, первое положение МКТ утверждает, что частицы вещества не заполняют пространство непрерывно. Частицы расположены дискретно, то есть как бы в отдельных точках. Между частицами имеются промежутки, величина которых может меняться в некоторых пределах.

В пользу первого положения МКТ свидетельствует явление теплового расширения тел. А именно, при нагревании увеличиваются расстояния между частицами вещества, и размеры тела возрастают. При охлаждении, наоборот, расстояния между частицами уменьшаются, в результате чего тело сжимается.

Ярким подтверждением первого положения МКТ служит также диффузия — взаимное проникновение соприкасающихся веществ друг в друга.

Например, на рис. 1 показан процесс диффузии в жидкости. Частицы растворимого вещества помещены в стакан с водой и расположены вначале в верхней левой части стакана. С течением времени частицы перемещаются (как говорят, диффундируют) из области высокой концентрации в область низкой концентрации. В конце концов концентрация частиц становится везде одинаковой — частицы равномерно распределяются по всему объёму жидкости.

Прочность на растяжение и величину сил притяжения молекул

Рис. 1. Диффузия в жидкости

Как объяснить диффузию с точки зрения молекулярно-кинетической теории? Очень просто: частицы одного вещества проникают в промежутки между частицами другого вещества. Диффузия идёт тем быстрее, чем больше эти промежутки — поэтому легче всего смешиваются друг с другом газы (в которых расстояния между частицами много больше размеров самих частиц).

Тепловое движение атомов и молекул

Напомним ещё раз формулировку второго положения МКТ: частицы вещества совершают беспорядочное движение (называемое также тепловым движением), которое никогда не прекращается.

Опытным подтверждением второго положения МКТ служит опять-таки явление диффузии ведь взаимное проникновение частиц возможно лишь при их беспрерывном движении! Но наиболее ярким доказательством вечного хаотического движения частиц вещества является броуновское движение. Так называется непрерывное беспорядочное движение броуновских частиц — пылинок или крупинок (размерами см), взвешенных в жидкости или газе.

Броуновское движение получило своё название в честь шотландского ботаника Роберта Броуна, увидевшего в микроскоп беспрерывную пляску взвешенных в воде частиц цветочной пыльцы. В доказательство того, что это движение совершается вечно, Броун нашёл кусок кварца с полостью, заполненной водой. Несмотря на то, что вода попала туда много миллионов лет назад, оказавшиеся там соринки продолжали своё движение, которое ничем не отличалось от того, что наблюдалось в других опытах.

Причина броуновского движения заключается в том, что взвешенная частица испытывает нескомпенсированные удары со стороны молекул жидкости (газа), причём в силу хаотичности движения молекул величина и направление результирующего воздействия абсолютно непредсказуемы. Поэтому броуновская частица описывает сложные зигзагообразные траектории (рис. 2).

Прочность на растяжение и величину сил притяжения молекул

Рис. 2. Броуновское движение

Кстати говоря, броуновское движение может рассматриваться и как доказательство самого факта существования молекул, т. е. также может служить опытным обоснованием первого положения МКТ.

Взаимодействие частиц вещества

Третье положение МКТ говорит о взаимодействии частиц вещества: атомы или молекулы взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами: при увеличении расстояний начинают преобладать силы притяжения, при уменьшении — силы отталкивания.

О справедливости третьего положения МКТ свидетельствуют силы упругости, возникающие при деформациях тел. При растяжении тела увеличиваются расстояния между его частицами, и начинают преобладать силы притяжения частиц друг к другу. При сжатии тела расстояния между частицами уменьшаются, и в результате преобладают силы отталкивания. В обоих случаях упругая сила направлена в сторону, противоположную деформации.

Читайте также:  Лечение при растяжении голеностопный сустав

Другим подтверждением существования сил межмолекулярного взаимодействия служит наличие трёх агрегатных состояний вещества.

В газах молекулы удалены друг от друга на расстояния, значительно превышающие размеры самих молекул (в воздухе при нормальных условиях — примерно в 1000 раз). На таких расстояниях силы взаимодействия между молекулами практически отсутствуют, поэтому газы занимают весь предоставленный им объём и легко сжимаются.

В жидкостях промежутки между молекулами сравнимы с размерами молекул. Силы молекулярного притяжения весьма ощутимы и обеспечивают сохранение жидкостями объёма. Но для сохранения жидкостями ещё и формы эти силы недостаточно велики — жидкости, как и газы, принимают форму сосуда.

В твёрдых телах силы притяжения между частицами очень велики: твёрдые тела сохраняют не только объём, но и форму.

Переход вещества из одного агрегатного состояния в другое является результатом изменения величины сил взаимодействия между частицами вещества. Сами частицы остаются при этом неизменными.

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Учебник по физике
10 класс

   
   

  • Если молекулы существуют и движутся, то между ними обязательно должны действовать силы. Без такого взаимодействия не было бы ни жидких, ни твердых тел.

Молекулярные силы

Доказать существование значительных сил взаимодействия между атомами или молекулами несложно. Попробуйте-ка сломать толстую палку! А ведь она состоит из молекул.

Существование сил притяжения между атомами может доказать такой наглядный опыт. Надо взять два свинцовых бруска и острым ножом срезать тонкие слои с их торцов. При достаточном навыке срезы получаются гладкими и чистыми, свободными от оксидов свинца. Если плотно прижать бруски друг к другу свежими срезами, то они слипнутся. После этого можно один из брусков нагрузить гирей в несколько килограммов, но разрыва брусков не произойдет. Силы притяжения между атомами оказываются достаточными, чтобы предотвратить разрыв.

Если бы между молекулами не существовало сил притяжения, то вещество при любых условиях находилось бы в газообразном состоянии. Только благодаря силам притяжения молекулы могут удерживаться около друг друга и образовывать жидкие и твердые тела.

Но кроме сил притяжения между молекулами должны действовать силы отталкивания. В том, что между атомами или молекулами при непосредственном их сближении появляются силы отталкивания, убедиться очень просто. Если бы таких сил не существовало, то вы свободно могли бы проткнуть пальцем толстую стальную плиту. Более того, без появления сил отталкивания на очень малых расстояниях между молекулами вещество не могло бы существовать. Молекулы проникли бы друг в друга, и весь кусок вещества сжался бы до объема одной молекулы.

Представления о существенной роли межмолекулярных сил для описания свойств газов впервые ввел нидерландский физик Я. Д. Ван-дер-Ваальс (1837—1923). Он не пытался установить точную зависимость сил от расстояния. Ван-дер-Ваальс считал, что на малых расстояниях между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения, сравнительно медленно убывающими при дальнейшем увеличении расстояния. Силы межмолекулярного взаимодействия часто называют ван-дер-ваальсовыми силами.

Электромагнитная природа молекулярных сил

Приступить к теоретическому исследованию молекулярных сил до начала XX в. было почти невозможно. Простые и хорошо изученные гравитационные силы при взаимодействии столь малых тел, как молекулы, явно не могли играть заметной роли. Оставалось предположить, что молекулярные силы имеют электромагнитную природу.

Любой атом и тем более молекула — это сложная система, состоящая из большого числа заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними действуют значительные электрические силы: происходит взаимодействие между электронами и ядрами соседних молекул. Описание движения частиц внутри атомов и молекул — очень сложная задача. Ее рассматривают в атомной физике и решают с помощью законов квантовой механики. Мы ограничимся качественным рассмотрением межмолекулярных сил различных типов и потом приведем конечный результат: примерную зависимость сил взаимодействия двух молекул от расстояния между ними.

Ориентационные силы

У многих молекул, например у молекулы воды, распределение положительных и отрицательных зарядов таково, что в среднем центры этих зарядов не совпадают. Такую молекулу приближенно можно рассматривать как совокупность двух точечных зарядов +q и -q на небольшом расстоянии l друг от друга (рис. 2.7). Эта система зарядов называется электрическим диполем(1). Электрические свойства такой молекулы характеризуются дипольным моментом

Прочность на растяжение и величину сил притяжения молекул

где q — абсолютное значение заряда.

Прочность на растяжение и величину сил притяжения молекул

Рис. 2.7

Рассчитывать значения дипольных моментов молекул на первых порах не умели. До создания квантовой механики это вообще было невозможно.

Но если считать дипольные моменты р1 и р2 двух молекул известными, то зависимость силы взаимодействия между ними от расстояния можно вычислить.

Для этого нужно только знать закон взаимодействия двух точечных электрических зарядов. Этот закон (закон Кулона) уже давно был известен. Сила притяжения двух диполей максимальна, когда они располагаются вдоль одной линии (рис. 2.8). Эта сила возникает из-за того, что расстояние между разноименными зарядами, находящимися в точках 2 и 3, чуть меньше, чем между одноименными, расположенными в точках 1, З и 2, 4.

Прочность на растяжение и величину сил притяжения молекул

Рис. 2.8

Сила взаимодействия диполей зависит от их взаимной ориентации. Поэтому она называется ориентационной. Хаотическое тепловое движение непрерывно меняет ориентацию молекул-диполей. Учитывая это, силу взаимодействия диполей нужно вычислять как среднюю по всевозможным ориентациям. Расчеты приводят к следующему результату: сила притяжения пропорциональна произведению дипольных моментов р1 и р2 молекул и обратно пропорциональна расстоянию между ними в седьмой степени:

Прочность на растяжение и величину сил притяжения молекул

Это очень быстрое убывание по сравнению с силой взаимодействия точечных заряженных частиц, которая пропорциональна Прочность на растяжение и величину сил притяжения молекул.

Индукционные (поляризационные) силы

Можно указать еще одно достаточно простое взаимодействие молекул. Оно возникает между двумя молекулами, одна из которых обладает дипольным моментом, а другая — нет.

Дипольная молекула создает электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределенными по объему. Положительные заряды смещаются по направлению линий напряженности электрического поля, а отрицательные — против. В результате неполярная молекула растягивается (поляризуется) и у нее возникает дипольный момент (рис. 2.9).

Прочность на растяжение и величину сил притяжения молекул

Рис. 2.9

Силу взаимодействия можно рассчитать и в этом случае. Она пропорциональна дипольному моменту р полярной молекулы, некоторой величине α, характеризующей способность неполярной молекулы поляризоваться (она называется поляризуемостью), и обратно пропорциональна седьмой степени расстояния между молекулами:

Прочность на растяжение и величину сил притяжения молекул

Эти силы притяжения называются индукционными или поляризационными, так как они возникают благодаря поляризации молекул, вызванной электростатической индукцией.

Дисперсионные силы

Хорошо известно, что силы притяжения существуют и между неполярными молекулами. Например, атомы инертных газов не имеют дипольного момента, но тем не менее притягиваются друг к другу.

Читайте также:  Воротник при растяжении шеи

Качественно и очень приближенно появление этих сил можно объяснить так. В атомах и молекулах электроны каким-то сложным образом движутся вокруг ядер, и в среднем по времени дипольные моменты молекул могут оказаться равными нулю. Но в каждый момент времени электроны занимают какое-то определенное положение. Поэтому мгновенное значение дипольного момента отлично от нуля. Такой «мгновенный» диполь создает поле, поляризующее соседние неполярные атомы. Из-за этого «мгновенные» диполи начинают взаимодействовать друг с другом. Полная сила взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных «мгновенных» диполей.

Расчет, выполненный в рамках квантовой механики, приводит к выводу, что сила взаимодействия в этом случае пропорциональна произведению поляризуемостей молекул α1 и α2 и обратно пропорциональна седьмой степени расстояния:

Прочность на растяжение и величину сил притяжения молекул

Эти силы называются дисперсионными, потому что дисперсия света (зависимость показателя преломления света от частоты) определяется теми же свойствами молекул, что и рассмотренные силы.

Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их проявления не зависит от того, есть ли у них постоянные дипольные моменты или нет. Обычно эти силы превосходят как ориентационные, так и индукционные силы. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, ориентационная сила оказывается больше дисперсионной (для молекул воды в 3 раза). При взаимодействии же таких полярных молекул, как СО, НСl, дисперсионные силы в десятки и сотни раз превосходят другие силы.

Существенно, что все три типа сил притяжения одинаковым образом убывают с расстоянием пропорционально Прочность на растяжение и величину сил притяжения молекул. Впрочем, на расстояниях, в несколько раз больших размеров молекул, начинает сказываться конечность скорости распространения электромагнитных взаимодействий. Из-за этого на расстояниях порядка 10-5 см силы притяжения начинают убывать уже Прочность на растяжение и величину сил притяжения молекул.

Силы отталкивания

Теперь обратим внимание на силы отталкивания, действующие между молекулами на очень малых расстояниях. С одной стороны, ситуация здесь проще, а с другой — сложнее. Проще в том смысле, что эти силы очень быстро возрастают при сближении молекул, и поэтому та или иная быстрота изменения силы с расстоянием не оказывает заметного влияния на течение любых процессов.

Сложность состоит в том, что силы отталкивания в значительно большей мере, чем силы притяжения, зависят от индивидуальности молекул. Зная, как молекула А отталкивает молекулы В и С, мы еще не в состоянии судить, какие силы отталкивания будут действовать между молекулами В и С. При непосредственном сближении молекул их электронные оболочки начинают перекрываться и особенность строения молекул сказывается в большей степени, чем при больших расстояниях между ними.

К достаточно хорошим результатам приводит допущение, что силы отталкивания возрастают при сближении молекул по закону

Прочность на растяжение и величину сил притяжения молекул

Учитывая, что силы притяжения с уменьшением расстояния увеличиваются пропорционально Прочность на растяжение и величину сил притяжения молекул, а силы отталкивания — пропорционально Прочность на растяжение и величину сил притяжения молекул, можно примерную зависимость сил от расстояния изобразить графически.

График зависимости молекулярных сил от расстояния между молекулами

Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция результирующей силы взаимодействия между ними на прямую, соединяющую центры молекул. Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия между ними практически не сказываются. Силы взаимодействия между молекулами короткодействующие.

На расстояниях, превышающих 2—3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро увеличивается, когда электронные оболочки молекул начинают перекрываться.

На рисунке 2.10 графически изображена зависимость проекции Fr силы взаимодействия молекул от расстояния между их центрами. На расстоянии г0, примерно равном сумме радиусов молекул, Fr = 0, так как сила притяжения равна по модулю силе отталкивания. При г > г0 между молекулами действует сила притяжения. Проекция силы, действующей на правую молекулу, отрицательна. При г < г0 действует сила отталкивания с положительным значением проекции Fr.

Прочность на растяжение и величину сил притяжения молекул

Рис. 2.10

Происхождение сил упругости

Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее г0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходные положения после прекращения внешнего воздействия.

При малом смещении молекул из положений равновесия силы притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис. 2.10). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.

Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул приходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях, в миллионы раз превышающих размеры молекул.

Атомно-силовой микроскоп

На действии сил отталкивания между атомами и молекулами на малых расстояниях основано устройство атомно-силового микроскопа (АСМ). Этот микроскоп в отличие от туннельного позволяет получать изображения не проводящих электрический ток поверхностей. Вместо вольфрамового острия в АСМ используют маленький осколок алмаза, заостренный до атомных размеров. Этот осколок закрепляется на тонком металлическом держателе. При сближении острия с исследуемой поверхностью электронные облака атомов алмаза и поверхности начинают перекрываться и возникают силы отталкивания. Эти силы отклоняют кончик алмазного острия. Отклонение регистрируется с помощью лазерного луча, отражающегося от зеркальца, закрепленного на держателе. Отраженный луч приводит в действие пьезоэлектрический манипулятор, аналогичный манипулятору туннельного микроскопа. Механизм обратной связи обеспечивает такую высоту алмазной иглы над поверхностью, чтобы изгиб пластины держателя оставался неизменным.

На рисунке 2.11 вы видите изображение полимерных цепей аминокислоты аланина, полученное с помощью АСМ. Каждый бугорок представляет собой одну молекулу аминокислоты.

Прочность на растяжение и величину сил притяжения молекул

Рис. 2.11

В настоящее время сконструированы атомные микроскопы, устройство которых основано на действии молекулярных сил притяжения на расстояниях, в несколько раз превышающих размеры атома. Эти силы примерно в 1000 раз меньше сил отталкивания в АСМ. Поэтому применяется более сложная чувствительная система для регистрации сил.

Атомы и молекулы состоят из электрически заряженных частиц. Благодаря действию электрических сил на малых расстояниях молекулы притягиваются, но начинают отталкиваться, когда электронные оболочки атомов перекрываются.

(1) Подробнее об электрических диполях будет рассказано в дальнейшем.

Источник