Пример задач на центральное растяжение и сжатие

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Читайте также:  Растяжение мышц шеи при беременности

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

2014-09-01 21-40-08 Скриншот экрана

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

2014-09-01 21-43-41 Скриншот экрана

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

Читайте также:  Что надо делать при сильном растяжении

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.

Источник

Статически неопределимыми называются такие стержни и стержневые системы, расчет которых не может быть произведен с помощью одних только уравнений статики, поскольку этих уравнений недостаточно для определения всех опорных реакций и внутренних усилий. Для решения таких задач необходимо составить дополнительные уравнения исходя из рассмотрения деформированного состояния стержня или стержневой системы.

Рассмотрим примеры решения статически неопределимых задач.

Пример 3.4. Для стержня ступенчато-постоянного поперечного сечения, закрепленного на обоих торцах (рис. 3.14, а), построим эпюру N, определим осевые перемещения характерных сечений и построим эпюру и.

Поскольку стержень закреплен с двух сторон, возникают две опорные реакции R{ и R2. Составим уравнение равновесия:

Пример задач на центральное растяжение и сжатие

Из этого уравнения нельзя определить опорные реакции Rx и R2. Поскольку стержень закреплен с двух сторон, его длина после действия нагрузки не изменится. Отсюда следует условие деформации стержня: А/ = 0.

Раскроем это условие следующим образом. Отбросим мысленно одно из закреплений (например, нижнее) и введем в этом сечении неизвестную силу, равную реакции в отброшенной связи Х= R2 (рис. 3.14, б).

Поставим условие, что образованный таким образом статически определимый стержень должен деформироваться так же, как и заданный. Тогда на основании принципа независимости действия сил можно записать:

Пример задач на центральное растяжение и сжатие

где Alp и Alx — величины удлинений (укорочений) стержня (см. рис. 3.14, б) от действия заданной нагрузки и силы X.

Эти величины равны:
Пример задач на центральное растяжение и сжатие

Пример задач на центральное растяжение и сжатие

Решаем дополнительное уравнение:

Пример задач на центральное растяжение и сжатие

Определяем вторую опорную реакцию из уравнения статики:

Пример задач на центральное растяжение и сжатие

Направления опорных реакций соответствуют принятым в начале расчета. Эпюра N приведена на рис. 3.14, в.

Пример задач на центральное растяжение и сжатие

Рис. 3.14

Определим величины удлинений и укорочений участков стержня и проверим выполнение условия его деформации:


Пример задач на центральное растяжение и сжатие

Задача решена правильно. Вычислим осевые перемещения характерных сечений:

Пример задач на центральное растяжение и сжатие

Эпюра осевых перемещений приведена на рис. 3.14, г. Осевые перемещения в пределах всех участков изменяются по линейному закону. Поперечные сечения перемещаются в положительном направлении оси Ох, т.е. вниз.

Пример 3.5. Стальная труба, заполненная бетоном, находится под действием сжимающей силы (рис. 3.15, а). Определим величины продольных сил и нормальных напряжений в трубе и бетоне при условии их совместной работы. Эффекты, связанные с поперечными деформациями, учитывать не будем.

Суммарная продольная сила в стержне является сжимающей и равна N = -Р. Она воспринимается одновременно стальной трубой и бетоном. Составим уравнение равновесия:

Пример задач на центральное растяжение и сжатие

где Nc и Nq — сжимающие продольные силы в трубе и бетоне (рис. 3.15, б).

Задача является статически неопределимой. Из условия совместной деформации трубы и бетона их укорочения должны быть одинаковыми по величине: А/с = А/б. Раскроем это условие:

Пример задач на центральное растяжение и сжатие

где ECFC и Е6Р6 — жесткости стальной трубы и бетона при сжатии.

Решив совместно полученные два уравнения, находим:

Пример задач на центральное растяжение и сжатие

Из этих формул следует, что сила Р распределяется между элементами стержня пропорционально их жесткостям.

Пример задач на центральное растяжение и сжатие

Рис. 3.15

Выполним числовой расчет, приняв сечение трубы 0 200 x10 мм, Ес = 2,1 • 105 МПа, Еб = 0,2- 105 МПа и Р= 500 кН. Площади поперечных сечений трубы и бетона равны:

Пример задач на центральное растяжение и сжатие

Определяем продольные силы и напряжения в элементах стержня:

Пример задач на центральное растяжение и сжатие

В статически неопределимых системах внутренние усилия и напряжения могут возникнуть не только при силовом, но и при тепловом воздействии (нагреве или охлаждении), а также при монтаже в случае неточного изготовления отдельных элементов и при смещении (осадке) опор.

Рассмотрим, например, закрепленный с двух сторон стержень постоянного поперечного сечения, подвергаемый нагреву на величину Т (рис. 3.16, а). Закрепления препятствуют свободному удлинению стержня. В силу этого возникают две равные по величине и противоположные по направлению опорные реакции Rx = R2 = R. Статически неопределимый стержень при нагреве испытывает сжатие силой N=—R.

Читайте также:  Растяжение мышц в грудной клетке что делать

Для определения продольной силы и напряжений в стержне используем условие его деформации: А/ = AlR + А1Т = 0, где AlR = —Rl/EF — возможное укорочение стержня от действия продольной силы N = —R (рис. 3.16, б) и A lT = a IT — возможное его удлинение при нагреве (рис. 3.16, в), где а — коэффициент линейного температурного расширения материала.

Составим уравнение относительно R, решив которое получим:

Пример задач на центральное растяжение и сжатиеПример задач на центральное растяжение и сжатие

Рис. 3.16

Напряжения в стержне прямо пропорциональны коэффициенту а, модулю упругости материала Е и величине температуры Т.

При охлаждении статически неопределимый стержень будет испытывать растяжение.

Пример 3.6. Латунный цилиндрический стержень ступенчато-постоянного сечения закреплен на торцах и находится под действием сосредоточенной силы Р = 40 кН и температуры Т = 20 °С (рис. 3.17, а). Построим эпюры N, о и и. В расчетах примем Е= 1,1 • 105 МПа и а = 1,65 • 10-5.

Под действием силы и температуры на закрепленных торцах возникают опорные реакции Rx и R2. Составим уравнение равновесия:

Пример задач на центральное растяжение и сжатие

Отбросим мысленно нижнее закрепление и заменим его силой X = R2 (рис. 3.17, б), для определения которой используем условие деформации стержня: А/ = А1Р + А1Х+ А 1Т= 0.

Учитывая, что площади поперечных сечений стержня равны Рх = к ? 32/4 = 7,07 см2 и Р2 = п • 52/4 = 19,63 см2, определим величины Alp, А и A If.

Пример задач на центральное растяжение и сжатиеПример задач на центральное растяжение и сжатие

Рис. 3.17

Подставив эти величины в условие деформации стержня, решим его относительно X

Пример задач на центральное растяжение и сжатие

Вторая опорная реакция равна R = Р — R2 = 40 — 67,57 = = —27,57 кН. Истинное направление R{ показано пунктиром. Эпюра N приведена на рис. 3.17, в. Оба участка стержня испытывают сжатие. Определим величины напряжений в стержне и удлинений и укорочений его участков.

Первый участок

Пример задач на центральное растяжение и сжатие

Проверим выполнение условия деформации стержня:

Пример задач на центральное растяжение и сжатие

Эпюры о и и приведены на рис. 3.17, г, д. Все сечения перемещаются в отрицательном направлении оси Ох, т.е. вверх. В пределах обоих участков перемещения изменяются по линейному закону.

Пример 3.7. При монтаже изображенной на рис. 3.18, а стержневой системы оказалось, что длина среднего стержня меньше проектной на величину 6 = 0,2 см. Определим величины усилий и напряжений в стержнях после монтажа и вертикальное перемещение узла В. В расчетах примем Fx = F3 = 10 см2, F2 = 12 см2, Е= 2,1 • 105 МПа.

При установке среднего стержня его надо подвергнуть предварительному растяжению. Крайние стержни после монтажа системы будут испытывать сжатие.

Вырежем мысленно узел В (рис. 3.18, б) и рассмотрим его равновесие под действием усилий Nx, N2 и N3:

Пример задач на центральное растяжение и сжатие

Двух уравнений статики недостаточно для определения трех усилий Nx, N2, N3 в стержнях. Система является статически неопределимой, и для ее расчета необходимо рассмотреть схему деформации системы и составить дополнительное уравнение.

Пример задач на центральное растяжение и сжатие

Рис. 3.18

В силу симметрии системы относительно оси Оу узел В после монтажа переместится вертикально вверх на величину ВВ’ = 5 — А/2 (рис. 3.18, в), где А/2 — величина удлинения среднего стержня. Крайние стержни укоротятся на величины А/, = А/3 = ВВ’ sin a = (5 — А/2) sin a.

Выразив A/j и Д/2 через усилия в стержнях, составим дополнительное уравнение: где /j = у/1,52 + 1,52 = 2,12 м и /2 = 3 м — длины стержней.

Пример задач на центральное растяжение и сжатие

Длина среднего стержня взята без учета весьма малой величины 5.

Учитывая соотношение между Nx и N2, находим усилия в стержнях:

Пример задач на центральное растяжение и сжатие

Усилия TVj и N3 являются сжимающими, a N2 — растягивающим. Определим напряжения в стержнях и величины их удлинений (укорочений).

Стержни АВ и BD

Пример задач на центральное растяжение и сжатие

Стержень СВ

Пример задач на центральное растяжение и сжатие

Вертикальное перемещение узла В равно

Пример задач на центральное растяжение и сжатие

Пример 3.8. В процессе работы стержневой системы (рис. 3.19, а) шарнирная опора А жесткой балки АВ получила осадку 5 = 0,5 см. Определим усилия и напряжения в поддерживающих балку стержнях CD и BE и их удлинения (укорочения). В расчетах примем Е1 = 10 см2, F2 = 15 см2 и Е= 2,1 • 105 МПа.

При осадке жесткой балки на шарнирной опоре возникает опорная реакция RA, а в поддерживающих балку стержнях — усилия TVj и N2 (см. рис. 3.19, а). По физическому смыслу задачи очевидно, что усилие Nl является растягивающим, a N2 — сжимающим.

Пример задач на центральное растяжение и сжатие

Рис. 3.19

Система является статически неопределимой. Составим уравнение равновесия, не содержащее опорную реакцию RA:

Пример задач на центральное растяжение и сжатие

Схема деформации системы показана на рис. 3.19, б. Соотношение между величиной удлинения первого стержня A/j и величиной укорочения второго стержня Д/2 получим из подобия треугольников:

Пример задач на центральное растяжение и сжатие

Выразив А/, и Д/2 через усилия в стержнях, получим следующее равенство:

Пример задач на центральное растяжение и сжатие

где /j = /2 = 3 м — длины стержней.

Подставив числовые значения Е, Fx, F2, 1Х, /2 и соотношение между Nx и N2 и решив полученное уравнение, находим:

Пример задач на центральное растяжение и сжатие

Определим напряжения в стержнях и величины их удлинений (укорочений).

Первый стержень

Пример задач на центральное растяжение и сжатие

Второй стержень

Пример задач на центральное растяжение и сжатие

Источник