Пример решения задачи при растяжении

Пример решения задачи при растяжении thumbnail

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Читайте также:  Лучшая мазь от растяжения плеча

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Сопротивление материалов

Решение задач на растяжение и сжатие



Расчеты на прочность при растяжении и сжатии

В результате проведения механических испытаний устанавливают предельные напряжения, при которых происходит нарушение работы или разрушение деталей конструкции.
Предельным напряжением при статической нагрузке для пластичных материалов является предел текучести, для хрупких — предел прочности.
Для обеспечения прочности деталей необходимо, чтобы возникающие в них в процессе эксплуатации наибольшие напряжения были меньше предельных.

Отношение предельного напряжения к напряжению, возникающему в процессе работы детали, называют коэффициентом запаса прочности и обозначают буквой s:

s = σпред / σ,

где σ = N / А – реальное напряжение, возникающее в элементе конструкции.

Недостаточный коэффициент запаса прочности может привести к потере работоспособности конструкции, а избыточный (слишком высокий) — к перерасходу материала и утяжелению конструкции. Минимально необходимый коэффициент запаса прочности называют допускаемым, и обозначают [s].
Отношение предельного напряжения к допускаемому запасу прочности называют допускаемым напряжением, и обозначают [σ]:

[σ] = σпред / [s].

Условие прочности в деталях и конструкциях заключается в том, что наибольшее возникающее в ней напряжение (рабочее напряжение) не должно превышать допускаемого:

σmax≤ [σ], или в другом виде: s ≥ [s].

Если допускаемые напряжения при растяжении и сжатии различны, их обозначают [σр] и [σс].

Расчетная формула при растяжении и сжатии имеет вид:

σ = N / А ≤ [σ]

и читается следующим образом: нормальное напряжение в опасном сечении, вычисленное по формуле σ = N /А, не должно превышать допустимое.

На практике расчеты на прочность проводят для решения задач:

— проектный расчет, при котором определяются минимальные размеры опасного сечения;
— проверочный расчет, при котором определяется рабочее напряжение и сравнивается с предельно допустимым;
-определение допускаемой нагрузки при заданных размерах опасного сечения.

***

Растяжение под действием собственного веса

Если ось бруса вертикальна, то его собственный вес вызывает деформацию растяжения или сжатия.
решение задач по сопромату
Рассмотрим брус постоянного сечения весом G, длиной l, закрепленный верхним концом и нагруженный только собственным весом G (рис.1).
Для определения напряжений в поперечном сечении на переменном расстоянии z от нижнего конца применим метод сечений.
Рассмотрим равновесие нижней части бруса и составим уравнение равновесия:

Σ Z = 0;     Nz — Gz = 0,    откуда:

Nz = Gz = γ А z,

где γ — удельный вес материала бруса, А – площадь его поперечного сечения, z — длина части бруса от свободного конца до рассматриваемого сечения.

Напряжения, возникающие в сечениях бруса, нагруженного собственным весом, определяются по формуле:

σz = Nz / А = γ А z / А = γ z,

т. е. для нагруженного собственным весом бруса нормальное напряжение не зависит от площади поперечного сечения. Очевидно, что опасное сечение будет находиться в заделке:

σmax = γ l.

Эпюра распределения напряжений вдоль оси бруса представляет собой треугольник.
Если требуется определить максимальную длину бруса, нагруженного собственным весом, используют расчет по предельному допустимому напряжению в сечении:

lпр = [σ] / γ.

***



Статически неопределимые задачи

Иногда в практике расчета конструкций требуется определить неизвестные силовые факторы (например, реакции связей или внутренние силы), при этом количество неизвестных силовых факторов превышает количество возможных уравнений равновесия для данной конструкции, и расчет произвести рассмотренными ранее способами не представляется возможным.

Задачи на расчет конструкций, в которых внутренние силовые факторы не могут быть определены с помощью одних лишь уравнений равновесия статики, называют статически неопределимыми. Подобные задачи нередко встречаются при расчете конструкций, подверженных температурным деформациям.
Для решения таких задач помимо уравнений равновесия составляют уравнение перемещений или деформаций.

Рассмотрим невесомый стержень постоянного сечения площадью А, длиной l, жестко защемленный по концам (см. рис. 2).
статически неопределимые задачи
При нагревании в стержне возникают температурные напряжения сжатия.
Попробуем определить эти напряжения.

Читайте также:  Мазь сустав растяжение связок

Составим для стержня уравнение равновесия:

Σ Z = 0; RС — RВ = 0,

откуда следует, что реакции RС и RВ равны между собой, а применив метод сечений установим, что продольная сила N в сечениях стержня равна неизвестным реакциям:

N = RС = RВ.

Составим дополнительное уравнение, для чего мысленно отбросим правую заделку и заменим ее реакцией RВ, тогда дополнительное уравнение деформации будет иметь вид:

Δlt = ΔlСВ

т. е. температурное удлинение стержня равно его укорочению под действием реакции RB, так как связи предполагаются абсолютно жесткими.

Температурное удлинение стержня определяется по формуле: Δlt = αtl, где α — коэффициент линейного расширения стержня.

Укорочение стержня под действием реакции: ΔlСВ = RB l / (EА).

Приравняв правые части равенств, получим:

αtl = RB l / (EА), откуда RB = αtEА.

Температурные напряжения в реальных конструкциях могут достигать значительных величин. Чтобы исключить их отрицательное влияние на прочность конструкций, прибегают к различным методам. Мосты, например, закрепляют лишь на одном конце (на одном берегу), а второй конец оставляют подвижным.
В длинных трубопроводах, подверженных температурным напряжениям, делают компенсирующие карманы, петли и т. д.

***

Материалы раздела «Растяжение и сжатие»:

  • Примеры решения задач по сопромату.
  • Основные понятия о деформации растяжения и сжатия.
  • Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.

Срез

Правильные ответы на вопросы Теста № 6

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

2

1

1

3

3

2

1

3

2

1

Источник

Статически неопределимыми называются такие стержни и стержневые системы, расчет которых не может быть произведен с помощью одних только уравнений статики, поскольку этих уравнений недостаточно для определения всех опорных реакций и внутренних усилий. Для решения таких задач необходимо составить дополнительные уравнения исходя из рассмотрения деформированного состояния стержня или стержневой системы.

Рассмотрим примеры решения статически неопределимых задач.

Пример 3.4. Для стержня ступенчато-постоянного поперечного сечения, закрепленного на обоих торцах (рис. 3.14, а), построим эпюру N, определим осевые перемещения характерных сечений и построим эпюру и.

Поскольку стержень закреплен с двух сторон, возникают две опорные реакции R{ и R2. Составим уравнение равновесия:

Пример решения задачи при растяжении

Из этого уравнения нельзя определить опорные реакции Rx и R2. Поскольку стержень закреплен с двух сторон, его длина после действия нагрузки не изменится. Отсюда следует условие деформации стержня: А/ = 0.

Раскроем это условие следующим образом. Отбросим мысленно одно из закреплений (например, нижнее) и введем в этом сечении неизвестную силу, равную реакции в отброшенной связи Х= R2 (рис. 3.14, б).

Поставим условие, что образованный таким образом статически определимый стержень должен деформироваться так же, как и заданный. Тогда на основании принципа независимости действия сил можно записать:

Пример решения задачи при растяжении

где Alp и Alx — величины удлинений (укорочений) стержня (см. рис. 3.14, б) от действия заданной нагрузки и силы X.

Эти величины равны:
Пример решения задачи при растяжении

Пример решения задачи при растяжении

Решаем дополнительное уравнение:

Пример решения задачи при растяжении

Определяем вторую опорную реакцию из уравнения статики:

Пример решения задачи при растяжении

Направления опорных реакций соответствуют принятым в начале расчета. Эпюра N приведена на рис. 3.14, в.

Пример решения задачи при растяжении

Рис. 3.14

Определим величины удлинений и укорочений участков стержня и проверим выполнение условия его деформации:


Пример решения задачи при растяжении

Задача решена правильно. Вычислим осевые перемещения характерных сечений:

Пример решения задачи при растяжении

Эпюра осевых перемещений приведена на рис. 3.14, г. Осевые перемещения в пределах всех участков изменяются по линейному закону. Поперечные сечения перемещаются в положительном направлении оси Ох, т.е. вниз.

Пример 3.5. Стальная труба, заполненная бетоном, находится под действием сжимающей силы (рис. 3.15, а). Определим величины продольных сил и нормальных напряжений в трубе и бетоне при условии их совместной работы. Эффекты, связанные с поперечными деформациями, учитывать не будем.

Суммарная продольная сила в стержне является сжимающей и равна N = -Р. Она воспринимается одновременно стальной трубой и бетоном. Составим уравнение равновесия:

Пример решения задачи при растяжении

где Nc и Nq — сжимающие продольные силы в трубе и бетоне (рис. 3.15, б).

Задача является статически неопределимой. Из условия совместной деформации трубы и бетона их укорочения должны быть одинаковыми по величине: А/с = А/б. Раскроем это условие:

Пример решения задачи при растяжении

где ECFC и Е6Р6 — жесткости стальной трубы и бетона при сжатии.

Решив совместно полученные два уравнения, находим:

Пример решения задачи при растяжении

Из этих формул следует, что сила Р распределяется между элементами стержня пропорционально их жесткостям.

Пример решения задачи при растяжении

Рис. 3.15

Выполним числовой расчет, приняв сечение трубы 0 200 x10 мм, Ес = 2,1 • 105 МПа, Еб = 0,2- 105 МПа и Р= 500 кН. Площади поперечных сечений трубы и бетона равны:

Пример решения задачи при растяжении

Определяем продольные силы и напряжения в элементах стержня:

Пример решения задачи при растяжении

В статически неопределимых системах внутренние усилия и напряжения могут возникнуть не только при силовом, но и при тепловом воздействии (нагреве или охлаждении), а также при монтаже в случае неточного изготовления отдельных элементов и при смещении (осадке) опор.

Рассмотрим, например, закрепленный с двух сторон стержень постоянного поперечного сечения, подвергаемый нагреву на величину Т (рис. 3.16, а). Закрепления препятствуют свободному удлинению стержня. В силу этого возникают две равные по величине и противоположные по направлению опорные реакции Rx = R2 = R. Статически неопределимый стержень при нагреве испытывает сжатие силой N=—R.

Читайте также:  Испытания на растяжение сварного соединения

Для определения продольной силы и напряжений в стержне используем условие его деформации: А/ = AlR + А1Т = 0, где AlR = —Rl/EF — возможное укорочение стержня от действия продольной силы N = —R (рис. 3.16, б) и A lT = a IT — возможное его удлинение при нагреве (рис. 3.16, в), где а — коэффициент линейного температурного расширения материала.

Составим уравнение относительно R, решив которое получим:

Пример решения задачи при растяженииПример решения задачи при растяжении

Рис. 3.16

Напряжения в стержне прямо пропорциональны коэффициенту а, модулю упругости материала Е и величине температуры Т.

При охлаждении статически неопределимый стержень будет испытывать растяжение.

Пример 3.6. Латунный цилиндрический стержень ступенчато-постоянного сечения закреплен на торцах и находится под действием сосредоточенной силы Р = 40 кН и температуры Т = 20 °С (рис. 3.17, а). Построим эпюры N, о и и. В расчетах примем Е= 1,1 • 105 МПа и а = 1,65 • 10-5.

Под действием силы и температуры на закрепленных торцах возникают опорные реакции Rx и R2. Составим уравнение равновесия:

Пример решения задачи при растяжении

Отбросим мысленно нижнее закрепление и заменим его силой X = R2 (рис. 3.17, б), для определения которой используем условие деформации стержня: А/ = А1Р + А1Х+ А 1Т= 0.

Учитывая, что площади поперечных сечений стержня равны Рх = к ? 32/4 = 7,07 см2 и Р2 = п • 52/4 = 19,63 см2, определим величины Alp, А и A If.

Пример решения задачи при растяженииПример решения задачи при растяжении

Рис. 3.17

Подставив эти величины в условие деформации стержня, решим его относительно X

Пример решения задачи при растяжении

Вторая опорная реакция равна R = Р — R2 = 40 — 67,57 = = —27,57 кН. Истинное направление R{ показано пунктиром. Эпюра N приведена на рис. 3.17, в. Оба участка стержня испытывают сжатие. Определим величины напряжений в стержне и удлинений и укорочений его участков.

Первый участок

Пример решения задачи при растяжении

Проверим выполнение условия деформации стержня:

Пример решения задачи при растяжении

Эпюры о и и приведены на рис. 3.17, г, д. Все сечения перемещаются в отрицательном направлении оси Ох, т.е. вверх. В пределах обоих участков перемещения изменяются по линейному закону.

Пример 3.7. При монтаже изображенной на рис. 3.18, а стержневой системы оказалось, что длина среднего стержня меньше проектной на величину 6 = 0,2 см. Определим величины усилий и напряжений в стержнях после монтажа и вертикальное перемещение узла В. В расчетах примем Fx = F3 = 10 см2, F2 = 12 см2, Е= 2,1 • 105 МПа.

При установке среднего стержня его надо подвергнуть предварительному растяжению. Крайние стержни после монтажа системы будут испытывать сжатие.

Вырежем мысленно узел В (рис. 3.18, б) и рассмотрим его равновесие под действием усилий Nx, N2 и N3:

Пример решения задачи при растяжении

Двух уравнений статики недостаточно для определения трех усилий Nx, N2, N3 в стержнях. Система является статически неопределимой, и для ее расчета необходимо рассмотреть схему деформации системы и составить дополнительное уравнение.

Пример решения задачи при растяжении

Рис. 3.18

В силу симметрии системы относительно оси Оу узел В после монтажа переместится вертикально вверх на величину ВВ’ = 5 — А/2 (рис. 3.18, в), где А/2 — величина удлинения среднего стержня. Крайние стержни укоротятся на величины А/, = А/3 = ВВ’ sin a = (5 — А/2) sin a.

Выразив A/j и Д/2 через усилия в стержнях, составим дополнительное уравнение: где /j = у/1,52 + 1,52 = 2,12 м и /2 = 3 м — длины стержней.

Пример решения задачи при растяжении

Длина среднего стержня взята без учета весьма малой величины 5.

Учитывая соотношение между Nx и N2, находим усилия в стержнях:

Пример решения задачи при растяжении

Усилия TVj и N3 являются сжимающими, a N2 — растягивающим. Определим напряжения в стержнях и величины их удлинений (укорочений).

Стержни АВ и BD

Пример решения задачи при растяжении

Стержень СВ

Пример решения задачи при растяжении

Вертикальное перемещение узла В равно

Пример решения задачи при растяжении

Пример 3.8. В процессе работы стержневой системы (рис. 3.19, а) шарнирная опора А жесткой балки АВ получила осадку 5 = 0,5 см. Определим усилия и напряжения в поддерживающих балку стержнях CD и BE и их удлинения (укорочения). В расчетах примем Е1 = 10 см2, F2 = 15 см2 и Е= 2,1 • 105 МПа.

При осадке жесткой балки на шарнирной опоре возникает опорная реакция RA, а в поддерживающих балку стержнях — усилия TVj и N2 (см. рис. 3.19, а). По физическому смыслу задачи очевидно, что усилие Nl является растягивающим, a N2 — сжимающим.

Пример решения задачи при растяжении

Рис. 3.19

Система является статически неопределимой. Составим уравнение равновесия, не содержащее опорную реакцию RA:

Пример решения задачи при растяжении

Схема деформации системы показана на рис. 3.19, б. Соотношение между величиной удлинения первого стержня A/j и величиной укорочения второго стержня Д/2 получим из подобия треугольников:

Пример решения задачи при растяжении

Выразив А/, и Д/2 через усилия в стержнях, получим следующее равенство:

Пример решения задачи при растяжении

где /j = /2 = 3 м — длины стержней.

Подставив числовые значения Е, Fx, F2, 1Х, /2 и соотношение между Nx и N2 и решив полученное уравнение, находим:

Пример решения задачи при растяжении

Определим напряжения в стержнях и величины их удлинений (укорочений).

Первый стержень

Пример решения задачи при растяжении

Второй стержень

Пример решения задачи при растяжении

Источник