Пример решения задач на плоский изгиб с растяжением

Изгиб с растяжением
Изгиб с растяжением 2
Изгиб с растяжением 3
Изгиб с растяжением 4
Изгиб с растяжением 5
Изгиб с растяжением 6
Изгиб с растяжением 7
Изгиб с растяжением 8
Изгиб с растяжением 9

Изгиб с растяжением – частный случай сложного сопротивления, при котором на брус действуют продольные и поперечные нагрузки, пересекающие ось бруса. В общем случае в поперечных сечениях возникают пять внутренних усилий: действующие в двух плоскостях изгибающие моменты Mz, My, поперечные силы Qz, Qy, а также продольная сила N. Возникает сложный изгиб с растяжением или сжатием. Пренебрегая касательными напряжениями от поперечных сил Qz, Qy (для длинных балок с отношением ℓ/h > 10 их влияние незначительно), можно считать напряженное состояние в опасных точках линейным. Внецентренное растяжение или сжатие Внецентренное растяжение – частный случай изгиба с растяжением, при котором брус растягивается силами, параллельными оси бруса так, что их равнодействующая не совпадает с осью бруса, а проходит через точку Р, называемую полюсом силы. Внутренние усилия и напряжения В произвольном сечении х бруса (рис.8.7, а) методом сечений определяем внутренние усилия Рис. 8.6. Примеры деталей и узлов, работающих при внецентренном нагружении: а – болт-костыль; б – пружина сцепления; в – сварное соединение Отличны от нуля три внутренних усилия (рис. 8.7, б), от которых возникают нормальные напряжения, действующие по одной из трех пар граней (рис. 8.7, в); две другие пары граней свободны от напряжений. Имеет место линейное напряженное состояние. Напряжения в произвольной точке являются суммой трех слагаемых Учитывая, что отношение i = – радиус инерции сечения, получим О правиле знаков внутренних усилий. Формула (8.10) выведена для случая положительной растягивающей силы N и изгибающих моментов Mz, My, вызывающих растягивающие напряжения в точке, принадлежащей первой четверти осей координат (где x > 0 и y > 0). Поэтому оси координат поперечного сечения бруса следует направлять так, чтобы полюс P (точка приложения силы) находился в первом квадранте. Если сила, приложенная к брусу, сжимающая, то ее числовое значение будет со знаком минус. Анализ формулы (8.10) 1. Отсутствие координаты х свидетельствует о неизменности напряжений вдоль оси бруса. 2. В случае приложения силы в центр тяжести сечения (zP = 0, yP = 0) напряжения в любой точке сечения постоянны и равны σ = F/A, то есть центральное растяжение является частным случаем внецентренного. Рис. 8.7. Схема к определению внутренних усилий и напряжений при внецентренном приложении силы 3. Независимо от значений координат полюса Р напряжение в центре тяжести сечения (yцт =0, zцт = 0), σцт = F/A. 4. Переменные z и y в первой степени, следовательно, формула (8.10) является уравнением прямой и нормальные напряжения распределяются по линейному закону, значит должна быть нейтральная линия, на которой напряжения равны нулю. Уравнение нейтральной линии при внецентренном растяжении Нейтральная линия (нейтральная ось) – геометрическое место точек, в которых нормальное напряжение в поперечном сечении равно нулю. Приравняем нулю уравнение (8.10). Поскольку F/A ≠ 0, то выражение в скобках равно нулю Переменные z, y в первой степени, следовательно, нормальные напряжения в сечении распределяются по линейной зависимости. Полученное выражение приведем к виду уравнения прямой в отрезках, где a и b – отрезки, отсекаемые линией на осях координат. В нашем случае уравнение нейтральной линии будет записано как Свободный член полученного уравнения не равен нулю, следовательно, нейтральная линия через начало координат не проходит. Отрезки, отсекаемые нейтральной линией на осях y и z, соответственно равны: По найденным значениям отрезков проводят нейтральную линию и находят точки В и С, наиболее удаленные от нее (рис. 8.9). Выполняют это простым геометрическим построением, проводя касательные к сечению, параллельные нейтральной оси. Найденные точки – опасные, поскольку напряжения в них наибольшие по величине. Рис. 8.8. Уравнение прямой в отрезках и график прямой линии, известные из школьного курса Уравнения (8.12), связывающие координаты полюса Р – точки приложения внешней нагрузки с положением нейтральной линии, являются гиперболической функцией. Чем ближе полюс Р к центру тяжести сечения (значения yP, zP уменьшаются), тем нейтральная линия проходит дальше и в пределе стремится к бесконечности. И, наоборот, по мере отдаления точки приложения силы от центра тяжести нейтральная линия асимптотически приближается к нему. Однако пересечь центр тяжести сечения нейтральная линия не может (см. анализ формулы (8.10)). В центре тяжести σцт = F/A (рис. 8.9), поскольку yцт = 0 и zцт = 0 (подставьте в (8.10)). Нейтральная линия может разделять поперечное сечение на области, в которых действуют напряжения разных знаков. Некоторые материалы (чугун, силумин, керамика, кирпичная кладка…) хорошо сопротивляются сжатию и плохо – растяжению. Поэтому необходимо уметь определять такую область приложения нагрузки, в которой не возникают напряжения разных знаков. Ядро сечения Ядро сечения – область вокруг центра тяжести сечения, при приложении нагрузки внутри которой, напряжения во всем сечении будут одного знака. Контур ядра сечения строят путем окатывания нейтральной линией контура поперечного сечения, то есть решают задачу обратную той, в которой определяли положение нейтральной линии: куда следует прикладывать силу, чтобы нейтральная линия не пересекала контур сечения, а только касалась его. Задают несколько положений нейтральной линии, касательной к сечению (например, н.л.1, н.л.2, н.л.3), определяют координаты точек пересечения этих линий с осями координат (например, zн.л.1, yн.л.1). Затем, преобразуя уравнение (11), находят Рис. 8.10. Определение координат отрезков нейтральной линии для построения ядра сечения Рис. 8.9. Эпюра напряжений в поперечном сечении Нейтральная линия соответствующие им координаты точек ядра сечения (точки 1, 2, 3): Так как при переходе нейтральной линии с одной стороны на другую (например, от н.л 3 к н.л 4) она поворачивается вокруг угловой точки сечения, то точка приложения силы перемещается по прямой (на рис. 8.10 отрезок 3 – 4), образуя контур ядра. Пример 8.4. Построить ядро сечения для круга диаметром d. Решение. Квадрат радиуса инерции круга: Задаем положение нейтральной линии 1–1, касательной к окружности. Ее координаты: Координаты точки ядра сечения: Из симметрии сечения относительно его центра тяжести следует, что при других положениях нейтральной линии на окружности диаметром d точки ядра сечения образуют концентрический с ней круг диаметром d/4. Пример 8.5. Построить ядро сечения для прямоугольника с размером сторон bЧh. Решение. Квадраты радиусов инерции: Задаем положение нейтральной линии 1-1, касательной к верхней грани прямоугольника. Ее ко- ординаты: zн.л 1 = ∞; yн.л1 = h/2. Координаты соответствующей точки ядра сечения: Аналогично для нейтральной линии 2-2: zн.л 2 = b/2; yн.л 2 = ∞. Учитывая симметрию прямоугольного сечения относительно осей z и y, задаем положения нейтральных линий на противоположных сторонах прямоугольника и получаем еще две точки. Соединяя все точки, получаем ядро сечения в виде ромба с диагоналями, равными h/3 и b/3. Пример 8.6. Построить ядро сечения для швеллера № 20. Решение. Из таблицы сортамента выпишем исходные данные и выполним рисунок швеллера. Последовательно задаем положение нейтральной линии (I-I, II-II, III-III, IV-IV), касающейся контура сечения, и вычисляем координаты точек ядра сечения. Расчеты представлены в табличном виде. Ядро сечения имеет вид четырехугольника, асимметричного относительно оси ординат. Положение ядра сечения зависит лишь от формы и размеров поперечного сечения, но не зависит от величины приложенной силы. Расчет на прочность при внецентренном нагружении Поверочный расчет выполняют, используя условие прочности Проектный расчет обладает особенностью, связанной с тем, что геометрические характеристики, входящие в условие прочности содержат искомый размер поперечного сечения в разной степени. Площадь А измеряется в м2, а моменты сопротивления W в м3. Попытка выразить искомый yн.л. = h/2 = 20/2 = 10 см; zн.л. = ∞; размер из условия прочности приводит к трансцендентной функции, то есть аналитической функции, не являющейся алгебраической. Проектный расчет выполняют методом итераций 1 [от лат. iteratio – повторение]. В первом приближении, пренебрегая одним из внутренних усилий, – продольной силой N – подбирают размер сечения только из условия прочности при изгибе. Полученный размер подставляют в исходное уравнение и выполняют следующую пробу. Процесс повторяют до тех пор, пока невязка – разность размеров последующей и предыдущей проб, не достигнет заданной наперед малости. Пример 8.7. (Винокуров А. И. Сборник задач … 5.35). Подобрать диаметр стержня выпускного клапана. При расчете использовать усилие F в момент открывания клапана в конце рабочего хода поршня. Решение. Сила давления газов на тарелку клапана 533441Н Внутренние усилия в сечении 1-1 стержня клапана (по модулю): N = F; M = F•e. Условие прочности: По обе стороны от знака неравенства искомый диаметр – имеем трансцендентное уравнение, которое решаем методом приближений: Метод последовательных приближений, при котором каждое новое приближение вычисляют исходя из предыдущего; начальное приближение выбирается в достаточной степени произвольно. Дано: p = 1,5 МПа; e = 12 мм; D = 35 мм; [σ] = 210 МПа Разность между последним и предпоследним приближениями Процесс подбора прекращаем, принимаем d = 10 мм. Проверка: Напряжения изгиба больше напряжений растяжения в 6,9 раза Пример 8.8. (Винокуров А. И. Сборник задач … 5.38.). Из расчета на прочность определить размер h скобы струбцины. Решение. Условие прочности при внецентренном растяжении плоской фигуры σ=+≤[σ] где A = b•h; W = b•h2/6; M = F(a+h/2). Условие прочности: Требуемый размер скобы: Размер h в обеих части неравенства. Полученное уравнение – трансцендентное. Решаем его методом последовательных приближений. В первом приближении принимаем h в скобках под корнем равным нулю: h0 = 0. Тогда Невязка подбора 100 25,4 % Следующее приближение 101,58 мм. Невязка подбора 100 4,5 % Следующее приближение 102,54 мм. Невязка подбора 100 0,95 % невязка менее 1 %, поэтому выходим из цикла подбора. Принимаем h = 103 мм. Проверка: Сопоставим вклады от изгиба и растяжения в общее напряжение: Напряжения от изгиба в 8,24 раза превышают напряжения от растяжения. Полученное соотношение можно сделать более благоприятным снизив долю растягивающих напряжений от изгиба за счет уменьшения плеча е изгибающего момента. На практике применяют тавровое и двутавровое сечения, смещая центр тяжести с ближе к линии действия силы и располагая больше материала в области растягивающих напряжений, к которым хрупкие материалы более чувствительны. Рис. 8.11. Примеры выполнения поперечного сечения бруса, подверженного действию внецентренного растяжения

Читайте также:  Условие прочности при растяжении сжатии допускаемые напряжения

Источник

Совместное действие изгиба и растяжения (сжатия)

При сочетании прямого изгиба и растяжения (или сжатия) бруса в его поперечных сечениях возникает три внутренних силовых фактора: Продольная сила Nx, поперечная сила Qy (или Qz), изгибающий момент Mz (или My). Этот случай нагружения изображен на рисунке, и показаны эпюры нормальных напряжений σN2 и σMy для некоторого произвольного сечения, находящегося на расстоянии a от свободного конца.

Этот случай нагружения практически почти не отличается от частного случая внецентренного растяжения, который сводится к центральному растяжению и чистому прямому изгибу.

Отличие состоит в том, что в первом случае во всех поперечных сечениях Qz = 0 и, следовательно, изгибающий момент во всех поперечных сечениях имеет одно и то же значение. Учитывая, что и Nx во всех поперечных сечениях одинакова, приходим к заключению, что все поперечные сечения равноопасны.

В обоих рассмотренных случаях нормальное напряжение в произвольной точке поперечного сечения вычисляется как алгебраическая сумма напряжений, соответствующих продольной силе и изгибающему моменту:

При сочетании косого изгиба и осевого нагружения бруса в его поперечных сечениях возникает пять внутренних силовых факторов Nx, Qy, Qz, My, Mz.

К сочетанию чистого косого изгиба с центральным растяжением сводится общий случай внецентренного растяжения бруса.

Нормальное напряжение в двух последних случаях в произвольной точке поперечного сечения вычисляется по формуле:

Знак каждого из слагаемых целесообразно устанавливать по характеру деформации бруса.

Необходимо иметь в виду, что вычисление напряжений, основанное на принципе независимости действия сил, допустимо лишь для достаточно жесткого бруса. Только в этом случае перемещения, возникающие вследствие упругих деформаций, настолько малы, что можно не учитывать их влияния на расположение нагрузок, т.е. вести расчет, исходя из размеров недеформированного бруса.

Пример расчетов задач по теме «плоский изгиб с растяжением — сжатием»

Задача 10.

Для заданной балки требуется:

1) изобразить расчетную схему и построить эпюры продольных сил N и изгибающих моментов M;

2) определить положение нейтральной линии в опасном сечении;

3) построить эпюры нормальных напряжений в опасном сечении от продольной силы, изгибающего момента и их совместного действия (суммарную эпюру σ).

Примечание. Плоскость действия нагрузки совпадает с плоскостью симметрии стержня.

a = 0,34 м; P1 = 510 кН; двутавр № 36;

b = 0,40 м; P2 = 34 кН; швеллер № 18 a;

c = 3,2 м; q = 16 кН/м; уголок 200х200х20.

1) Изобразим расчетную схему и построим эпюры продольных сил N и изгибающих моментов M.

а) Вычислим величины на чертеже.

5P1 = 5 ∙ 510 = 2550 кН;

0,6a = 0,6 ∙ 0,34 = 20,4 см;

0,4a = 0,4 ∙ 0,34 = 13,6 см;

0,6b = 0,6 ∙ 40 = 24 см.

б) Отметим точки A, B, D, E на чертеже:

Колонна имеет сечение в виде тавра, состоящего из двух простых фигур – двух прямоугольников 1 и 2. Сечение симметричное, проведем центральную ось Y.

в) Вычислим геометрические характеристики.

Площади фигур:

A1 = 0,6b ∙ 0,4a = 24 ∙ 3,6 = 326,4 см2;

A2 = 0,6ab = 20,4 ∙ 40 = 816 см2;

A = A1 + A2 = 326,4 + 816 = 2142,4 см2.

Положение центра тяжести (в качестве отсчета, т.е. в качестве вспомогательной оси принята ось Z1):

Проведем центральную ось Z. Расстояние между осями Z1 и Z2 простых фигур и центральной осью определим из чертежа.

b1 = 12,14 см;

b2 = (0,5ab1) = 4,86 см.

Моменты инерции относительно центральных осей:

IZ = (IZ1 + b12 ∙ A1) + (IZ2 + b22 ∙ A2);

IZ = (5030,9 + 48104,7) + (28298,9 + 19273,6) = 100708,1 см4.

В этом варианте задачи достаточно знать IZ, но в общем случае надо искать IZ и IY.

IY = IY1 + IY2 = 0.4a ∙ (0,6b)3 + 0.6ab3 = 0.4 ∙ 34 ∙ 243 + 20,4 ∙ 403;

IY = 188 006,4 + 1 305 600 = 1 493 606,4 см4.

Квадраты радиусов инерции сечения:

Координаты точки приложения силы 5P1:

z5P1 = 0; y5P1 = b2 + 0,3a = 4,86 + 0,3 ∙ 34 = 15,06 см.

Координаты точки приложения силы P2:

Читайте также:  Что делать при растяжении пальца руки

zP2 = 0; yP2 = – (b1 + 0,2a) = – (12,14 + 0,2 ∙ 34) = – 18,94 см.

г)Расчетная схема – это упрощенное изображение (схематизация) объекта, где не учитывается ряд второстепенных факторов, оказывающих несущественное влияние на результат расчета.

d = 0,8ayC = 0,8a – 0,36a = 0,44a = 0,44 ∙ 34 = 14,96 см.

Изобразим расчетную схему:

д) Построим эпюру Q2 силы P2. В сечении 2 внутри колонны Q2 = P2 = 34 кН.

Построим эпюру N1 силы 5P1. В сечении 1 внутри колонны N1 = P2 = 34 кН.

Построим эпюру N результирующей силы.

N = P = 34 кН.

Построим эпюру изгибающего момента M2Z силы P2.

M2 = P2c = 34 ∙ 3,2 = 108,8 кН·м; M2 < 0.

Построим эпюру изгибающего момента M1Z силы 5P1.

M2 = 5P1d = 2550 ∙ 14,96 ∙ 10-2 = 38148 ∙ 10-2 = 381,5 кН·м.

2) Определим положение нейтральной линии в опасном сечении.

Из эпюр видно, что опасным сечением является сечение в области заделки. Максимальное сжатие в точке E, максимальное растяжение в точке D. Результирующий момент в опасном сечении

MZ = M1ZM2Z = 381,5 – 108,8 =272,7 кН·м.

Запишем уравнение нейтральной линии

Нейтральная линия не проходит через центр тяжести и представляет собой прямую, отсекающую на осях координат отрезки

ð прямая не пересекает ось Z, она параллельна оси Z.

Проведем нейтральную линию в опасном сечении.

Найдем напряжение сжатия в опасной точке E:

yE и zE – координаты точки E.

zE = 0; yE = 14,96 см.

σE = – 2,23 ∙ 107 ∙ (1 + 2,56) = – 79,388 ∙ 106 = – 79,4 МПа.

Найдем напряжение растяжения в опасной точке D:

yD и zD – координаты точки D.

zD = 0; yD = – 19,04 см.

σD = – 2,23 ∙ 107 ∙ (1 – 3,25) = 50,2 ∙ 106 = 50,2 МПа.

Строим эпюру напряжений.

3) Построим эпюры нормальных напряжений в опасном сечении от продольной силы, изгибающего момента и их совместного действия (суммарную эпюру σ).

Источник

Пример решения задачи «прямой поперечный изгиб» №1

Условие примера задачи на прямой поперечный изгиб

Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи «прямой поперечный изгиб»

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

.

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

кН·м.

Из второго уравнения – вертикальную реакцию :

кН.

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

Строим эпюры перерезывающих сил и изгибающих моментов

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

кН·м.

Сечение 4. Закроем листком левую часть балки. Тогда

кН;

кН·м.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Читайте также:  Долевая нить при растяжении ответ

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи «прямой поперечный изгиб» №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема

Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

; .

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

Тогда

кН;

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

,

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

кН;

кН·м.

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

кН;

кН·м.

Сечение 4. Закрываем листком правую часть балки. Тогда

кН;

кН·м.

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН;

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Перерезывающая сила

.

Отсюда

м.

Экстремальное значение изгибающего момента в сечении 7 равно:

кН·м.

Определяем требуемый момент сопротивления балки из условия прочности по нормальным напряжениям

Согласно эпюре , максимальный по алгебраической величине изгибающий момент возникает в третьем поперечном сечении балки: кН·см. Тогда

см3.

По сортаменту (см. прил. 1, табл. П1.3) подбираем двутавр № 30а, имеющий см3.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении двутавровой балки, вычисляются по формуле

.

По сортаменту для выбранного нами двутавра определяем, что статический момент половины сечения относительно нейтральной оси см3, момент инерции относительно нейтральной оси см4, а толщина стенки см.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы кН. Тогда

кН/см2 кН/см2,

то есть условие прочности по касательным напряжениям выполняется.

Варианты задач по теме «прямой поперечный изгиб» для самостоятельного решения

Условие задачи на прямой изгиб для самостоятельного решения

Для двух заданных схем балок (рис. 3.11) требуется:

1. построить эпюры перерезывающих сил и изгибающих моментов ;

2. подобрать из условия прочности по нормальным напряжениям ( кН/см2) балку круглого поперечного сечения для схемы a и балку двутаврового поперечного сечения для схемы б;

3. проверить прочность подобранных балок по касательным напряжениям (кН/см2).

Варианты расчетных схем

Рис. 3.11

Варианты исходных данных к задаче для самостоятельного решения «прямой поперечный изгиб»

Номер

схемы

(рис. 3.11)

l,

м

M,

кН·м

P,

кН

q,

кН/м

1

3

0,2

0,6

0,2

8

5

10

2

4

0,3

0,5

0,3

7

6

11

3

5

0,4

0,4

0,3

6

7

12

4

6

0,5

0,3

0,2

5

8

13

5

3

0,6

0,7

0,2

4

9

14

6

4

0,7

0,5

0,3

8

10

9

7

5

0,8

0,4

0,6

7

5

10

8

6

0,2

0,6

0,3

6

6

11

9

3

0,3

0,5

0,4

5

7

12

4

0,4

0,4

0,2

4

8

8

Источник