Преобразование функций смещение сжатия растяжение

Преобразование функций смещение сжатия растяжение thumbnail

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Преобразование функций смещение сжатия растяжение

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Преобразование функций смещение сжатия растяжение

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Преобразование функций смещение сжатия растяжение

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Преобразование функций смещение сжатия растяжение

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Преобразование функций смещение сжатия растяжение

Преобразование функций смещение сжатия растяжение

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Преобразование функций смещение сжатия растяжение

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Преобразование функций смещение сжатия растяжение

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Преобразование функций смещение сжатия растяжение

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Преобразование функций смещение сжатия растяжение

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Преобразование функций смещение сжатия растяжение

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Преобразование функций смещение сжатия растяжение

Продолжение — в статье «Построение графиков функций».

Источник

Если Вы знаете, как выглядят графики простейших элементарных функций, или умеете быстро строить их по характерным точкам, то сумеете также быстро построить на их основе графики более сложных функций того же класса. Для этого существуют правила преобразования графиков функций. Они легко запоминаются, но если Вы всё же не уверены в результате, проверьте его по одной-двум хорошим точкам. Эти правила, разумеется, общие для всех функций, а не только для тех, которые изучают в школе, поэтому известный график дальше будем называть заданным.

Пусть задан график функции y = f(x). Чтобы построить график функции

  1. y = mf(x), где m > 0 и m ≠ 1, нужно ординаты точек заданного графика умножить на m. Такое преобразование называется растяжением от оси x c коэффициентом m, если m > 1, и сжатием к оси x, если 0 < m < 1.
  2. y = −f(x) получается из графика функции f(x) преобразованием симметрии относительно оси x. (Преобразование симметрии — зеркальное отражение относительно прямой.)
  3. y = f(x) + n, получается из графика функции f(x) параллельным переносом последнего вдоль оси ординат на n единиц вверх, если n > 0 и, соответственно на |n| единиц вниз, если n
  4. y = f(kx), где k > 0 и k ≠ 1. Искомый график функции получается из заданного сжатием с коэффициентом k к оси y (если 0 < k < 1 указанное «сжатие» фактически является растяжением с коэффициентом 1/k)
  5. y = f(−x) получается из графика функции f(x) преобразованием симметрии относительно оси y
  6. y = f(x + l) получается из графика функции f(x) параллельным переносом последнего на l единиц влево, если l > 0 и, соответственно на |l| единиц вправо, если m < 0.
Читайте также:  Лечение растяжения под коленом

Например, пусть задан график функции y = √x_.

Преобразование функций смещение сжатия растяжение

Чтобы построить графики других функций, содержащих аргумент (x) под знаком квадратного корня, воспользуемся перечисленными выше правилами. Заданный график повторим во вновь начерченных осях «карандашом бледно», требуемый график, который получится после преобразований, сделаем более интенсивным. В тетради лишнее можно будет удалить ластиком, останется только результат выполнения задания.

Пример 1a. Построить график функции y = 2√x_

Преобразование функций смещение сжатия растяжение

Растянули в 2 раза от оси x. Ордината каждой точки увеличилась в 2 раза.

Пример 1b. Построить график функции y = √x_ /2

Преобразование функций смещение сжатия растяжение

Сжали вдвое к оси x. Ордината каждой точки уменьшилась в 2 раза.

Пример 3a. Построить график функции y = √x_ + 2

Преобразование функций смещение сжатия растяжение

Параллельно перенесли на 2 единицы вверх вдоль оси y. Ордината каждой точки увеличилась на 2.

Пример 3b. Построить график функции y = √x_ − 2

Преобразование функций смещение сжатия растяжение

Параллельно перенесли на 2 единицы вниз вдоль оси y. Ордината каждой точки уменьшилась на 2 единицы.

Пример 4a. Построить график функции y = √2x__

Преобразование функций смещение сжатия растяжение

Сжали вдвое к оси y. Абсцисса каждой точки уменьшилась в 2 раза.

Пример 4b. Построить график функции y = √x/2___

Преобразование функций смещение сжатия растяжение

Растянули в 2 раза от оси y. Абсцисса каждой точки увеличилась в 2 раза.

Пример 6a. Построить график функции y = √x + 2____

Преобразование функций смещение сжатия растяжение

Параллельно перенесли на 2 единицы влево вдоль оси x. Абсцисса каждой точки уменьшилась на 2 единицы.

Пример 6b. Построить график функции y = √x − 2____

Преобразование функций смещение сжатия растяжение

Параллельно перенесли на 2 единицы вправо вдоль оси x. Абсцисса каждой точки увеличилась на 2 единицы.

Пример 2. Построить график функции y = −√x_

Преобразование функций смещение сжатия растяжение

Применили преобразование симметрии – зеркально отразили относительно оси x.

Пример 5. Построить график функции y = √−x__

Преобразование функций смещение сжатия растяжение

Применили преобразование симметрии – зеркально отразили относительно оси y.

Заметим, что параллельный перенос графика относительно одной из осей в какую-либо сторону равносилен переносу этой оси относительно графика в противоположную сторону. Поэтому 3-е и 6-е правила можно объединить следующим образом: чтобы построить график функции
y = f(xm) + n
нужно выполнить параллельный перенос всей плоскости координат так, чтобы началом новой системы координат xy была точка O(m;n). Очевидно, что вместо того, чтобы дважды перерисовывать график, проще перечертить оси.

Пример 7.
Задан график функции y = √x_. Построить график функции y = √x + 3____ − 1.

В этом случае m = −3, n = −1. Если есть затруднения в определении знаков m и n, то записывайте формулу функции так, чтобы она совпадала с правилом

y = f(xm) + n;   y = √xm_____ + n;   y = √x − (−3)_______ + (−1)

Построение выполняем так. Чертим оси нужной системы координат. Находим точку с координатами (−3;−1). Проводим через неё «бледно карандашом» прямые параллельные основным осям. Это вспомогательная система координат. В этой (карандашной) системе координат строим график y = √x_. Относительно основной системы координат, он является графиком функции y = √x + 3____ − 1. Т.е., если карандаш удалить ластиком, то останется график, который требовалось построить.

Если нужно скомбинировать только параллельные переносы, чтобы построить график функции, то всё равно в каком порядке их выполнять, и всё равно, что переносить — оси или кривые. Но если нужно построить график сложной функции, используя и перенос, и растяжение-сжатие, и отражения, то следует тщательно соблюдать порядок выполнения операций.

Последовательность преобразований при построении графиков.

Пусть задан график функции y = f(x) и нужно построить график функции y = m·f(kx + l) + n, где k, l, m, n — числа.

  1. Записываем формулу функции в виде
    y = m·f(k·(x + l/k)), т.е. выносим за скобки коэффициент при х в аргументе функции.
  2. Производим сжатие с коэффициентом k вдоль оси Ох к оси Oy. (Если k Oy.)
  3. Если k Oy.
  4. Осуществляем параллельный перенос (сдвиг) полученного графика на l/k единиц влево или вправо (в зависимости от знака, для положительного числа влево).
  5. Производим растяжение с коэффициентом m от оси (вдоль оси Оy). (Если m Ox.)
  6. Если m Ox.
  7. Осуществляем параллельный перенос (сдвиг) полученного графика на n единиц вверх или вниз (в зависимости от знака, при n >0 вверх).

Пример 8.
Задан график функции y = √x_. Построить график функции y = −0,5√3x − 12______ + 2.

1. Записываем формулу функции в виде y = −0,5·√3·(x − 4)_______ + 2,
т.е. выносим за скобки коэффициент при х под знаком квадратного корня с учетом того, что 12/3 = 4.
2. Строим известный график функции. ——
3. Производим сжатие в 3 раза к оси Oy. ——

4. —   (преобразование симметрии относительно оси Oy не требуется, т.к. k = 3 > 0).

5. Сдвигаем полученный график на 4 единицы вправо. ——
6. Производим сжатие в 2 раза (растяжение с коэффициентом 0,5) к оси . ——
7. Симметрично отражаем график относительно оси Ox. ——
8. Сдвигаем последний на 2 единицы вверх. Получили требуемый график. ——

преобразование графика функции

Проверим результат по «удобным» точкам. Например, x1 = 4 и x2 = 16.
y1 = −0,5√3·4 − 12_____ + 2 = 2.
y2 = −0,5√3·16 − 12_____ + 2 = −1.
Точки с координатами (4;2) и (16;−1) действительно принадлежат последнему графику.

Источник

В машиностроении, строительстве и архитектуре при расчетах прочности и жесткости материалов используется математический аппарат технической механики. Деформация растяжения – одно из ключевых понятий, характеризующее механические процессы, происходящие в материалах при приложении к ним внешних воздействий. Для наглядности изучаются изменения, происходящие в брусе с постоянным сечением, характерные для упругой деформации при приложении внешних усилий.

Закон Гука (английский физик Р. Гук, 1653-1703) для упругой деформации растяжения/сжатия гласит, что нормальное напряжение находится в линейной зависимости (прямо пропорционально) к относительному удлинению/укорочению. Математический аппарат технической механики описывает эту формулу следующим образом:

Коэффициент пропорциональности E (модуль упругости, модуль Юнга) – величина определяющая жесткость материала, единица измерения – паскаль (ПА).

Его значения были установлены эмпирическим путем для большинства конструкционных материалов, необходимую информацию можно почерпнуть в справочниках по машиностроению. Относительная деформация является отношением изменения длины бруса к его изначальным размерам, это безразмерная величина, которая иногда отражается в процентном соотношении.

При растяжении или сжатии у бруса меняется не только длина, но происходят поперечные деформации: при сжатии образуется утолщение, при растяжении толщина сечения становится меньше. Величины этих изменений находятся в линейной зависимости друг от друга, причем установлено, что коэффициент пропорциональности Пуассона (фр. ученый С. Пуассон, 1781-1840) остается всегда неизменным для исследуемого материала.

Внутренние усилия при растяжении и сжатии

При приложении к брусу с постоянным сечением внешних воздействий, действие которых в любом поперечном разрезе направлено параллельно его центральной оси и перпендикулярно сечению, с ним происходит следующий вид деформации: растяжение или сжатие.  На основе гипотезы о принципе независимости внешнего воздействия для каждого из поперечных разрезов можно рассчитать внутреннее усилие как векторную сумму всех приложенных внешних воздействий. Растягивающие нагрузки в сопромате принято считать положительными, а сжимающие отрицательными.

Рассмотрев произвольный разрез бруса или стержня, можно сказать что внутренние напряжения равны векторной сумме всех внешних сил, сгруппированных по одной из его сторон. Это верно только с учетом принципа Сен-Венана (фр. инженер А. Сен-Венан, 1797-1886) о смягчении граничных условий, т.к. распределение внутренних усилий по поверхности разреза носит сложный характер с нелинейными зависимостями, но в данном случае значением погрешности можно пренебречь как несущественным.

Применяя гипотезу Бернулли (швейцарский математик, И. Бернулли, 1667-1748) о плоских сечениях, для более наглядного представления процессов распределения сил и напряжений по центральной оси бруса можно построить эпюры. Визуальное представление более информативно и в некоторых случаях позволяет получить необходимые величины без сложных расчетов. Графическое представление отражает наиболее нагруженные участки стержня, инженер может сразу определить проблемные места и ограничиться расчетами только для критических точек.

Все вышесказанное может быть применимо при квазистатической (система может быть описана статически) нагрузке стержня с постоянным диаметром. Потенциальная энергия системы на примере растяжения стержня определяется по формуле:

U=W=FΔl/2=N²l/(2EA)

Потенциальная энергия растяжения U концентрируется в образце и может быть приравнена к выполнению работы W (незначительное выделение тепловой энергии можно отнести к погрешности), которая была произведена силой F для увеличения длины стержня на значение абсолютного удлинения.  Преобразуя формулу, получаем, что вычислить значение величины потенциальной энергии растяжения можно, рассчитав отношение квадрата продольной силы N помноженной на длину стержня l и удвоенного произведения модуля Юнга E материала на величину сечения A.

Как видно из формулы, энергия растяжения всегда носит положительное значение, для нее невозможно применить гипотезу о независимости действия сил, т.к. это не векторная величина. Единица измерения – джоуль (Дж). В нижней части формулы стоит произведение EA – это так называемая жесткость сечения, при неизменном модуле Юнга она растет только за счет увеличения площади. Величина отношения жесткости к длине бруса рассматривается как жесткость бруса целиком.

Напряжения при растяжении сжатии

Используя гипотезу Бернулли для продольной упругой деформации стержня, можно определить продольную силу N как равнодействующую всех рассредоточенных по сечению внутренних усилий. Гипотеза Бернулли совместно с гипотезой о ненадавливании волокон позволяет сказать, что σ в произвольной точке разреза будут постоянны, т.к.  реакция продольных волокон одинакова на всем поперечном разрезе. Для определения величины нормального напряжения σ используется следующая формула:

Напряжение для упруго деформированного стержня описывается как отношение внутренней силы N к площади сечения A. Считается положительным при растяжении, при сжатии рассматривается как отрицательное.

Абсолютная деформация зависит от жесткости сечения, величины продольной силы и длины бруса. Зависимость можно описать по следующей формуле:

Δl=Nl/EA

Таким образом, методика расчета величины абсолютного изменения длины такова: необходимо просчитать отношение значения продольной силы N умноженной на длину стержня l и жесткости сечения (произведение модуля Юнга E на площадь сечения A).

В реальных расчетах на брус действует достаточно много разнонаправленных сил, для решения таких задач требуется построение эпюр, которые могут наглядно показать какие напряжения действуют на разных участках, чем обусловлена деформация при растяжении и сжатии.

В рамках такой квазистатической (условно статической) системы, как брус или стержень с переменным сечением или отверстием, потенциальная энергия растяжения может быть рассмотрена как сумма энергий однородных участков. При проведении расчетов важно правильно разделить стержень на участки и смоделировать все участвующие в процессе силы и напряжения. Для реальных расчетов построение эпюр – сложная задача, которая требует от инженера хорошего понимания действующих на деталь нагрузок. Например, вал со шкивами разного диаметра требует сначала определения критических точек и разбивки на соответствующие участки, затем построения графиков по ним.

Деформации при растяжении сжатии

При растяжении/сжатии бруса могут возникать 2 вида деформации. Первый – упругая, второй – пластическая. Для упругой деформации характерно восстановление первоначальных параметров после прекращения воздействия. В случае пластической стадии деформации материала он утрачивает и не восстанавливает форму и размеры. Величина воздействия для перехода одного вида в другой называется пределом текучести.

Для расчета перемещения при растяжении бруса или стержня следует использовать метод разделения на участки, в рамках которых осуществляется приложение внешних воздействий. В точках воздействия силы следует вычислить величину изменения длины, используя формулу: Δl=Nl/EA. Как видно она зависит от жесткости сечения, длины бруса или стержня и величины действующей продольной силы. Итоговым перемещением для бруса целиком будет сумма всех частичных перемещений, рассчитанных для точек приложения силы.

Поперечные деформации бруса (становится более толстым при сжатии и тонким при растяжении) также характеризуются абсолютной и относительной величиной деформации. Первая – разность между размером сечения после и до приложения внешних воздействий, вторая – отношение абсолютной деформации к его исходному размеру. Коэффициент Пуассона, отражающий линейную зависимость продольной и поперечной деформаций, определяет упругие качества материалов и считается неизменным для растяжения и сжатия. Продольные наиболее наглядно отражают процессы, происходящие в брусе или стержне при внешнем воздействии. Зная величину любой из них (продольной или поперечной) и используя коэффициент Пуассона, можно рассчитать значение неизвестной.

Для определения величины деформации пружины при растяжении можно применить закон Гука для пружин:

F=kx

В данном случае х – увеличение длины пружины, k – коэффициент жесткости (единица измерения Н/м), F – сила упругости, направленная в противоположную от смещения сторону. Величина абсолютной деформации будет равна отношению силы упругости к коэффициенту жесткости. Коэффициент жесткости определяет упругие свойства материала, используемого для изготовления, может быть использован для выбора материала изготовления в условиях решения конкретной задачи.

Расчеты на прочность и жесткость

Прочность характеризует способность конструкционного материала сопротивляться внешним воздействиям без разрушений и остаточных изменений. Жесткость находится в линейной зависимости от модуля Юнга и размера сечения. Чем больше площадь, модуль упругости не меняется, тем больше жесткость. В общем случае жесткость подразумевает способность деформироваться без значительных изменений. Коэффициент запаса прочности – безразмерная величина, равная отношению предельного напряжения к допустимому. Запас прочности характеризует штатный режим работы конструкции даже с учетом случайных и не предусмотренных нагрузок. Наименьшим запасом прочности обладают пластические (1.2-2.5) и хрупкие (2-5) материалы.

Применение в расчетах этих коэффициентов позволяет, например, рассчитать опасную толщину для стержня, при которой может возникнуть максимальное нормальное напряжение. Используя коэффициент прочности и возможное предельное напряжение возможно произвести расчет необходимого диаметра вала, который гарантированно обеспечит упругую деформацию и не приведет к пластической. Для инженеров-экономистов важны расчеты наименьших безопасных размеров деталей конструкции по заданным нагрузкам.

Большинство практических расчетов на прочность и жесткость производятся для получения минимальных значений геометрических размеров конструкционных элементов и деталей машин в условиях известных внешних воздействий и необходимого и достаточного запаса прочности. Может решаться обратная задача получения значений предельных нагрузок при условии сохранения геометрических размеров и для конкретного материала.

Сложные конструкции могут быть разделены на элементарные части, для которых будут производиться расчеты, затем полученные результаты интерпретируются в рамках всей системы, для этого удобно строить эпюры распределения внешних воздействий и внутренних напряжений статически определенной системы.

С помощью известной жесткости материала делают расчеты максимально возможной длины балки или стержня (вала) при условии неизменности его сечения. Для ступенчатых валов необходимо строить эпюры воздействия внешних сил и возникающих в точках их приложения внутренних напряжений в критических точках. От правильно построенной теоретической модели будет зависеть насколько эффективно и долго прослужит вал для станка, не разрушится ли он от динамических крутящих моментов. На этапе проектирования можно выявить потенциальные слабые точки и рассчитать необходимые параметры для заданного предела прочности.

С расчетами на прочность связаны такие понятия, как срез и смятие. Срез проявляется в виде разрушения детали соединения в условиях возникновения в ее поперечном сечении перпендикулярной к нему и достаточной силы.

При расчетах соединений используют пределы текучести используемых материалов и коэффициенты запаса прочности, вычисляют максимально возможные напряжения.

Исследования на прочность обычно подразумевают решение нескольких задач: в условиях проведения поверочного расчета на проверку прочности при известных усилиях и площади сечения оценивают фактический коэффициент запаса прочности; подбор оптимального диаметра при заданных нагрузках и допустимом напряжении; вычисляют грузоподъемность или несущую способность с помощью определения внутреннего усилия при известной площади сечения и напряжении.

Прочностные расчеты при разных видах воздействий в рамках условно статических систем сложны, требуют учета многих, иногда не очевидных, факторов, их практическая ценность заключается в вычислении допустимых размеров конструкционных материалов для заданных параметров запаса прочности.

Источник

Читайте также:  Признаки растяжения связки у собаки