Предел пропорциональности при растяжении образца

Предел пропорциональности при растяжении образца thumbnail

Лабораторная работа № 1

Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.

Основные сведения

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).

Образцы для испытания на растяжение

Рис. 1.1. Образцы для испытания на растяжение

Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:

В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.

В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).

Порядок выполнения и обработка результатов

Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.

Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).

В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.

На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.

Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».

На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.

При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.

Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.

Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.

Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δl/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.

Диаграмма растяжения образца из малоуглеродистой стали

Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали

Условная диаграмма напряжений при растяжении

Рис. 1.3. Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):

σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;

σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;

σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.

Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);

Определение предела упругости и условного предела текучести

Рис. 1.4. Определение предела упругости и условного предела текучести

σпч (σв) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;

σр – напряжение разрыва. Определяется условное σур и истинное σир=Fр/Аш, где Аш – площадь сечения «шейки» в месте разрыва.

Определяются также характеристики пластичности – относительное остаточное удлинение

δ = (l1 – l0)∙100% / l0,

где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение

ψ = (А0 — Аш)∙100% / А0.

По диаграмме напряжений можно приближенно определить модуль упругости I рода

E=σпц/ε=tgα,

причем после операции наклепа σпц возрастает на 20-30%.

Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.

Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.

По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали

Контрольные вопросы

  1. Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточные абсолютные деформации при нагружении силой, большей, чем Fт.
  2. На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
  3. Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
  4. Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
  5. Дайте определение предела пропорциональности.
  6. Дайте определение предела упругости.
  7. Дайте определение предела текучести.
  8. Дайте определение предела прочности.
  9. Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
  10. Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
  11. Как определяется остаточная деформация после разрушения образца?
  12. Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
  13. Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
  14. Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
  15. Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
  16. Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
  17. Можно ли определить модуль упругости материала по диаграмме напряжений?
  18. Как определить работу, затрачиваемую на деформации текучести лабораторного образца?

Испытание материалов на сжатие >
Краткая теория >
Примеры решения задач >

Источник

Цель
работы: изучение методики испытаний на
растяжение пластичных и хрупких
материалов; определение характеристик
прочности и пластичности углеродистой
стали и серого чугуна при растяжении.

Механические
испытания конструкционных материалов
предназначены для экспериментального
определения характеристик прочности,
пластичность, упругости и многих других,
которые необходимы для расчетов на
прочность, жесткость и устойчивость
элементов конструкций. Механические
испытания проводятся также при контроле
качества материалов на производстве,
исследование влияния на механические
свойства материалов химического состава
и режимов термической обработки, низких
и высоких температур, агрессивных сред,
длительности нагружения, вида напряженного
состояния и других факторов. Испытания
материалов на растяжения являются
основным и наиболее распространенным
методом изучения механических свойств,
поскольку они сравнительно просто
осуществимы, подробно разработаны и
нормированы (ГОСТ 1497-84), позволяют
получать наиболее важные характеристики
прочности, пластичности и упругости.

Постановка
работы: На машине УГ-20 проведены испытания
стального и чугунного образцов на
растяжение Р,
кН: (∆
l
),
mm,
где
δ
упругие
деформации нагруженных частей
испытательной машины. Указанны масштабы
нагрузок
Предел пропорциональности при растяжении образца
и деформаций
Предел пропорциональности при растяжении образца
размеры образов до и после испытаний.
Определить характеристики прочности
и пластичности стали и чугуна при
растяжении.

Испытание
углеродистой стали на растяжение.

  1. Пред
    испытанием измеряем диаметр d0=15,0
    мм и длину l=
    170 мм рабочей части образца. Вычисляем
    площадь сечения F0=πd02/4
    = 177 мм2
    =
    177 10-6
    м2.
    Затем на рабочей длине наносим
    штангенциркулем риски, определяющие
    расчетную длину l0
    =10
    d0=150
    мм
    образца. Образец устанавливается в
    захваты испытательной машины и проводится
    его растяжение вплоть до разрушения.
    После разрушения определяем характерные
    размеры образца: диаметр шейки dш=9,40
    мм; расчетная длина после разрыва
    l0p=180,6
    мм.
    Вычисляем площадь сечения Fш
    =
    πdш2/4=69,4
    мм2
    = 69,4 10-6
    м2.

Стальной
образец при растяжении разрушается
после образования шейки. В центре
минимального сечения шейки зарождается
трещина, которая затем развивается по
конической поверхности примерно под
углом 45о,
где действует τmax
, до окончательного разрушения образца.

  1. Записанную
    на машине УГ-20 кривую растяжения
    подвергаем обработке. Для этого проводим
    горизонтальную ось деформаций (∆l
    ),
    соответствующую
    нулевой нагрузке. Затем из точки 0
    пересечения прямолинейного участка
    кривой растяжения с осью (∆l
    ),

    проводим вертикальную ось нагрузок Р.
    Зная масштабы записи нагрузок
    Предел пропорциональности при растяжении образцар=1,26
    кН/мм и деформаций
    Предел пропорциональности при растяжении образцаl
    =0,48 кН/мм, наносим размерную сетку на
    диаграмму растяжения Р — (∆l
    ).
    Из
    диаграммы растяжения видно, что если
    образец подвергнуть упругопластичному
    деформированию, а затем разгрузить, то
    линии разгрузки и повторного нагружения
    примерно параллельны прямолинейному
    участку диаграммы растяжения ( закон
    упругой разгрузки).

  1. Определяем
    нагрузку Рпц,
    соответствующую пределу пропорциональности.
    Для этого в соответствии с ГОСТ 1497-84 на
    прямолинейном участке диаграммы Р —
    (∆l
    )
    проводим
    прямую МК, откладываем отрезок
    KN=0,5MK,
    проводим прямую 0N
    и параллельно ей – касательную к кривой
    растяжения. Ордината точки hпц

    представляет собой в масштабе нагрузку
    Рпц=hпцμp=
    47,5 мм 1,26 кН/мм = 59,85кН.

  2. Нагрузка
    Ру,
    соответствующая пределу упругости,
    определяется по допуску относительной
    остаточной деформации 0,05%. Это
    соответствует абсолютной остаточной
    деформации l0,05=0,0005l
    = 0,0005 170= 0,085
    мм.
    На оси деформации в масштабе
    откладываемl0,05,проводим
    прямую, параллельную линейному участку.
    Ордината hy
    точки пересечения прямой с кривой
    растяжения соответствует в масштабе
    нагрузок Ру=hуμp=52,5
    1,26 = 66,15 кН.

  3. Нагрузка
    РТ
    соответствующая
    физическому пределу текучести,
    определялся ординатой hT
    площадки текучести на диаграмме
    растяжения Рт=hтμp=57,5
    1,26 = 72,45 кН.

  4. Нагрузка
    Рв,
    соответствующая пределу прочности, —
    это наибольшая нагрузка при разрыве
    образца: Рв=hвμp=95
    1,26= 119,7 кН.

  5. Нагрузка
    Рк,
    соответствующая разрушению образца,
    равна: Рк=hкμp=89,0
    1,26=112,14 кН.

  6. Наносим
    на диаграмму Р — (∆l
    )

    полученные нагрузки.

  7. Определяем
    характеристики прочности стали при
    растяжении:


предел пропорциональности (напряжение,
превышение которого ведет к нарушению
линейной зависимости между нагрузкой
Р и удлинением lобразца)

Предел пропорциональности при растяжении образца.


предел упругости (напряжение, которое
соответствует относительной остаточной
деформации 0,05%)

Предел пропорциональности при растяжении образца.


физический предел текучести( напряжение,
которое соответствует площадке текучести
на диаграмме растяжения)

Предел пропорциональности при растяжении образца.


предел прочности или временное
сопротивление (напряжение, которое
соответствует наибольшей нагрузке
после разрушения образца)

Предел пропорциональности при растяжении образца.


сопротивление отрыву в шейке образца

Предел пропорциональности при растяжении образца.

Чем
выше эти характеристики, тем материал
прочнее.

  1. Находим
    характеристики пластичности при
    растяжении:


относительное остаточное удлинение
после разрыва образца

Предел пропорциональности при растяжении образца


относительное остаточное сужение в
шейке после разрыва образца

Предел пропорциональности при растяжении образца

Чем
выше характеристики
Предел пропорциональности при растяжении образца
и ????,
тем материал пластичнее.

Испытание
серого чугуна на растяжение

  1. Чугунный
    образец до испытаний аналогичен
    стальному( d0=15,0
    мм; F0=πd02/4
    = 177 мм2
    =
    177 10-6
    м2
    ;
    l0
    =10
    d0=150
    мм).
    Вид образца и его характерные размеры
    после разрыва:

d0p=14,9
мм; l0p=151,0
мм;

Fр=πd0р2/4
= 174 мм2
=
174 10-6
м2

Чугунный
образец при растяжении разрушается по
ослабленному пороками структуры сечению
перпендикулярно оси путем отрыва.

  1. Обработка
    диаграммы растяжения чугунного образца
    проводится аналогично рассмотренной
    для стального образца.

  1. По
    диаграмме Р — (∆l
    )
    определяем
    нагрузку, соответствующую пределу
    прочности: Рвр=hврμp=68
    0,360 = 24,5 кН

  2. Предел
    прочности серого чугуна при растяжении

Предел пропорциональности при растяжении образца.

  1. Характеристики
    пластичности серого чугуна при
    растяжении:


относительное остаточное удлинение
после разрыва образца

Предел пропорциональности при растяжении образца


относительное остаточное сужение после
разрыва образца

Предел пропорциональности при растяжении образца

Выводы:

  1. Изучена
    методика испытаний пластичных и хрупких
    материалов на растяжение.

  2. Определены
    характеристики прочности и пластичности
    углеродистой стали и серого чугуна при
    растяжении.

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Механические свойства материалов при растяжении и сжатии.

Механические характеристики строительных материалов устанавливаются в опытах с образцами. С точки зрения различия в механических свойствах материалы при кратковременном действии нагрузки и обычной температуре (+20) условно делятся на упруго-пластичные, упруго-хрупкие и упруго-вязкие.

а) Диаграмма растяжения образца из малоуглеродистой стали.

Испытанию на растяжение обычно подвергаются цилиндрические образцы с расчетной длиной  и первоначальным диаметром . Растягивающая нагрузка в испытательной машине возрастает постепенно с определенной скоростью, обусловленной ГОСТ, без толчков и ударов.

Предел пропорциональности при растяжении образца

Участок 0-1-участок линейной пропорциональности — представляет прямую линию. Нагрузка и деформация прямо пропорциональны друг другу, материал подчиняется закону Гука. Точка 1 является точкой перехода прямой в кривую. Выше этой точки линейное соотношение между  не имеет место.

Предел пропорциональности -максимальное условное напряжение, до которого материал подчиняется закону Гука. Условность напряжения в том, что при определении напряжения вместо истинной площади поперечного сечения образца , вводится первоначальная . Естественно, что при растяжении , истинный предел пропорциональности больше вычисленного.

При увеличении растягивающей силы за величиной деформация начинает расти быстрее нагрузки. Можно найти такую нагрузку , до которой материал имеет лишь упругие деформации.

Предел упругости -условное напряжение повышение которого вызывает незначительные остаточные деформации при разгрузке образца (0,001-0,03%).

При дальнейшем увеличении нагрузки диаграмма имеет ярко выраженный криволинейный вид с выпуклостью вверх, до тех пор, пока вблизи точки не начнут возникать значительные удлинения без заметного роста растягивающей силы (горизонтальный участок 3-3’).

 Предел текучести -условное напряжение, при котором происходит течение материала, т.е. увеличение деформации при постоянной (примерно) нагрузки.

При нагрузке  на поверхности зеркально шлифованного образца под углом 450 к продольной оси появляются так называемые линии Чернова — Людерса (полосы скольжения). Они вызваны взаимным перемещениям частиц материала. На участке (3-3’) стержень может удлиниться 10-15 раз больше, чем до предела пропорциональности.

После образования площадки текучести материал вновь начинает сопротивляться дальнейшему растяжению (упрочняется), а участок (3’-4) называется зоной упрочнения. До максимальной силы  продольное удлинение поперечное сужение образца почти равномерно по всей расчетной длине образца.

Предел прочности (или предел временного сопротивления) -наибольшее условное напряжение, которое выдерживает образец при испытании до разрушения.

Начиная с точки 4, поведение образца резко меняется: деформации удлинения и сужения сосредотачиваются в одном месте образца. Небольшой участок образца около этого места подвергается в дальнейшем наибольшему напряжению. Это влечет за собой местное сужение поперечного сечения, образуется «шейка» (иногда наблюдается образование «шейки» одновременно в нескольких местах). Вследствие уменьшения площади поперечного сечения для дальнейшего удлинения образца нужна все меньшая сила. Наконец при нагрузке  происходить разрыв образца.

Истинное напряжение  (напряжение в момент разрыва образца)-равно отношению силы  к площади сечения «шейки» .

 Свойства материала при разгрузке стремиться восстановить свою первоначальную форму и размеры называется упругостью, а свойства материала деформироваться в необратимой форме, сохраняя заданные размеры и форму под нагрузкой-пластичностью. Поэтому сталь и многие металлы называются упруго-пластичными материалами. Полная деформация таких материалов .

 Отношение полного удлинения при разрушении образца  к первоначальной длине  есть мера пластичности материала, т.е. способности получать большие остаточные деформации при разрушении. Если это отношение выражено в процентах, то её называют остаточным относительным удлинением образца .

Остаточное относительное сужение -величина для оценки пластических свойств материала.

Наклеп (или нагортовки)-Повторная нагрузка вызывает удлинения, материал подчиняется закону Гука вплоть до напряжения . Повышается предел пропорциональности материала (повышается и условный предел текучести -напряжение при котором остаточные деформации достигают 0,2%). Явление изменения свойств материала в результате предварительного пластического деформирования носит название наклепа или нагортовки. При дальнейшем нагружении диаграмма продолжается по кривой и предел прочности  остается неизменным.

Если же наклепанный стержень нагрузить через достаточно большое время, то повышается и предел прочности. Такое изменение свойства материала принято называть естественным старением. Оно может быть ускорено термической обработкой (искусственное старение). Наклёп и старение широко используются в технике- натяжка электропроводов, цепей, троссов перед установкой, холодная прокатка поверхности валиками и т.д.

При сжатии металлов явление наклепа протекает так же, как и при растяжении. Однако наклеп, вызванный предварительным растяжением понижает пределы пропорциональности и текучести при сжатии . Это явление носит название эффекта Баушингера. Аналогичные результаты получаются при испытании на кручение в одном, а потом в противоположном направлении.

Диаграмма сжатия образца из малоуглеродистой стали.

Предел пропорциональности при растяжении образца

Применяются цилиндрические образцы с отношением высоты  к диаметру  равным . Для более длинных образцов в опытах трудно избежать влияния продольного изгиба. Образец помещается между двумя плитами пресса, которые, сближаясь, деформирует его. Сжимаемый в продольном направлении образец стремится расшириться в поперечных направлениях. Однако из-за трения между плитами пресса и торцами образца расширение происходит не свободно. В результате образец приобретает вид бачонка.

Особенности свойств упруго пластичных материалов при сжатии:

  •  

Предел пропорциональности при растяжении образца

Разрушение материала не происходит, под действием приложенной силы образец принимает бочкообразную форму, а затем превращается в диск;

  •  На участке 0-1 материал образца подчиняется закону Гука, причем предел пропорциональности при сжатии  близок по абсолютной величине к  при растяжении, т.е. , а ,  ;
  •  В испытаниях обычно определяют предел пропорциональности;
  •  При загружениях за пределом пропорциональности полная деформация образца .

Диаграмма растяжения – сжатия упруго – хрупких материалов (на примере чугуна)

Вид образца до и после испытания

Особенности свойств упруго-хрупких материалов (чугун, бетон, природные камни и т.д.) при растяжении и сжатии:

  •  На диаграммах нет ярко выраженного начального прямолинейного участка (иногда диаграмму спрямляют на участке или на всем протяжении — штриховая линия). Материал условно упругий;
  •  Разрушение материала происходит как при растяжении, так и при сжатии, при малых остаточных деформациях ;
  •  

Предел пропорциональности при растяжении образца

В испытаниях определяют предел прочности . Обычно  при сжатии по абсолютной величине больше  при растяжении ( для чугуна ). Т.е. показатель прочности упруго-хрупких материалов при сжатии больше, чем при растяжении;

  •  Разрушение при растяжении происходит по плоскости перпендикулярно к продольной оси образца, при сжатии под углом 300-450 к продольной оси либо параллельно ей.

Диаграмма испытаний анизотропных упруго – вязких материалов (на примере древесины).

Испытание анизотропных  материалов (древесина, слоистые пластмассы) производится в нескольких направлениях (вдоль и поперек волокон- в опытах с древесиной). Вид образцов из древесины до и после испытания

Особенности механических свойств древесины при растяжении и сжатии:

  •  

Предел пропорциональности при растяжении образца

При растяжении вдоль волокон предел прочности материала  в несколько раз (до 10) больше, чем предел прочности поперек волокон , а полные деформации к моменту разрушения наоборот.

  •  При растяжении и сжатии вдоль волокон определяют предел прочности , поперек волокон — предел пропорциональности ;
  •  При сжатии (смятии) поперек волокон растяжение между волокнами уменьшается и материал переходит в новое качество- прессованную древесину;
  •  Вид диаграммы зависит от скорости нагружения  или скорости деформирования . Проявляются вязкие свойства материала, Поэтому древесину относят к группе упруго – вязких материалов.

Механизм упругой и пластической деформации.

Твердые тела разделяются на аморфные и кристаллические. Аморфные (стекло, пластмассы) в своем поведении обнаруживают качества  сходные с вязкой жидкостью, свойства их не носят стабильного характера, резко зависят от времени действия сил. В связи с этим рассмотрим механизм деформирования металлов.

Металлы и их сплавы, представляют собой полукристаллические тела, т.е. состоят из множества мелких кристаллов, называемые кристаллитами и зернами. Прочность металлов и сплавов определяются прочностью зерен и соединением их между собой. Внутри кристаллов, атомы металлов располагаются в определенном порядке, образуя правильную пространственную решетку, называемую кристаллической решеткой. Строение её зависит от свойств атомов и физических условий кристаллизации. Между атомами кристаллической решетки существуют постоянные силы взаимодействия, система которых в ненагруженном кристалле строго определена, также как и расположение самих атомов.

Под влиянием внешних сил изменяются расстояния между атомами. Если смещения невелики и силы межатомного взаимодействия не преодолены, то после снятия нагрузки атомы возвращаются в первоначальное положение устойчивого равновесия. Так протекает упругая деформация.

Если внешние силы увеличиваются, то возрастают и внутренние. Возникает пластическая деформация, а в дальнейшем и разрушения.

Пластическая деформация металлов происходит в результате смещения одного слоя атомов кристаллической решетки относительно другой на целое число элементов решетки (упрощенная идеализированная модель  изображена на рисунке).  Это явление называется скольжением. Расстояние “а” между атомами остается неизменным. Каждый предыдущий атом занимает место последующего. Кристалл сохраняет свои свойства, меняя лишь конфигурацию. На поверхности тела из упруго-пластичных материалов в момент течения появляются полосы скольжения.

Точные теоретические расчеты позволяют определить усилия, при которых должна появляться пластическая деформация скольжения. В действительности эта деформация образуется при уровнях напряжений в сотни раз меньше теоретических. Это объясняется наличием в реальных металлах дефектов и несовершенств кристаллической решетки. Например, отсутствие (выпадение) в кристаллической решетке одного или нескольких атомов, называемое вакансией, или слоя атомов, называемое дислокацией, а также внедрение (включение) частиц элементов другого  химического состава. В результате при невысоких уровнях напряжений вакансии, дислокации перемещаются через кристалл. При этом переход атомов в соседнее положение происходит не одновременно по всей плоскости скольжения, а распространяется подобно волне или подобно последовательному опрокидыванию брусков, в случае представленном на рисунке. Толкнув первый брусок, мы опрокинем последовательно все, на что потребуется энергии меньше, чем для опрокидывания всех брусков одновременно.

Возникшее в одном кристалле пластическое смещение не может возрастать неограниченно, т.к. оказывается блокированным соседними, более удачно ориентированными кристаллами. Этим объясняется упрочнение материала и увеличение сил при наличии пластической деформации. Повышение сопротивления движению дислокаций приводит к увеличению прочности металлов, например при включении в материал нитей или опилок другого материала. Получены бездислокационные (бездефектные) нитевидные металлические кристаллы “усы”, обладающие прочностью близкой к теоретической. Установлено, что при большом количестве вакансий, дислокаций, ориентированных определенным образом, удается также повысить прочность материала, т.к. наблюдается эффект гашения, например одной дислокации при встрече другой.   

Влияние различных факторов на механические свойства материалов.

Влияние изменения температуры.

Свойства материалов зависит от температуры тела Т. Изменение температуры, оказывает наименьшее влияние на каменные (естественные и искусственные) материалы. Металлы, их сплавы и полимеры существенно изменяют  механические характеристики при изменении температуры.

Опытами установлено:

  •  До  пределы текучести и прочности углеродистой стали повышаются  (), а остаточные относительное удлинение  уменьшается (примерно вдвое). Сталь становится синеломкой. При дальнейшем увеличении температуры  и  резко уменьшаются, а  увеличивается. Поэтому выше  такую сталь не применяют;
  •  При повышении температур модуль упругости стали уменьшается (до 40% при 5000), а коэффициент Пуассона увеличивается (от 0,28 при Т=200С до 0,33 при Т=5000);
  •  В случае длительного воздействия высокой температуры  происходит разрушение материала при напряжений  меньшем предела прочности . В связи с этим вводится специальная характеристика предел длительной прочности  — максимальное постоянно действующее напряжение, которое может выдержать материал, не разрушаясь в течение определенного времени t при заданной температуре Т. Чем меньше , а значит больше t, тем меньше остаточное относительное удлинение , т.е материал становится хрупким. Это явление называется охрупчиванием. Для высокополимеров указанный эффект проявляется при комнатной температуре;
  •  При охлаждении сталей, цинковых сплавов ниже 00 С модуль Е, пределы  и  возрастают, а показатели  и  — уменьшаются. Материал становится хрупким. Такие материалы называются хладноломкими. Цветные металлы (медь, алюминий, никель, серебро, золото) и специальные стали, не обладают хладноломкостью – при понижении температуры растут Е,  и  ,  и .

При действии высоких температур материалы должны обладать жаростойкостью (способность противостоять химическому воздействию, например газовой среде) и жаропрочностью (способностью сохранять механические свойства). Свойство материалов не размягчаться или слабо размягчаться при достаточно длительном воздействии высокой температуры, как температура каления, называется красностойкостью (для стали . Сейчас созданы специальные сплавы и металлокерамические материалы, которые надежно применяются при .

При низких температурах надо применять материалы, не обладающие хладноломкостью.

Влияние скорости нагружения и деформирования.

При увеличении скорости нагружения , а следовательно, и скоростей напряжений  и деформации , пластические материалы увеличивают сопротивляемость деформированию. У металлов влияние  проявляется при значительной разнице в скоростьях. Сильно зависят от  свойства пластмасс.

Сравнение результатов статических и динамических испытаний малоуглеродистой стали, на растяжение при комнатной температуре показывает следующее:

  •  Пределы прочности и пропорциональности при динамическом нагружении повышаются;
  •  Модуль Е и коэффициент  практически не зависят от , , ;
  •  Площадка текучести при динамических воздействиях исчезает, и деформация соответствующая , при увеличении  уменьшается, т.е. увеличение скорости нагружения способствует повышению хрупкости.

Влияние продолжительности действия нагрузки на механические свойства материалов.

Предел пропорциональности при растяжении образца

Загрузив образец из реального материала, который подчиняется закону Гука, получим график зависимости относительных деформации от времени. При напряжениях  (участок ВС) происходит нарастание во времени упругих деформаций после приложения нагрузки, а при напряжении  (участок EF) – убывание упругих деформаций после снятия нагрузки. Это явление носит название упругого последействия.

В вязких материалах явление последействия (уже не упругого) проявляется в двух видах: ползучести и релаксации.

Предел пропорциональности при растяжении образца

Процесс нарастания во времени остаточной деформации при постоянном напряжении и температуре называется ползучестью. Этот процесс для бетонов, древесины при обычной температуре может быть затухающим или незатухающим. Затухающая ползучесть не опасна, незатухающая  — заканчивается разрушением (точка  F). Поэтому для таких материалов вводится понятие предела длительного сопротивления  — под которым понимается максимальное напряжение, превышение которого вызывает незатухающую ползучесть, приводящую к разрушению. Для древесины , для бетонов .

В металлах при обычной температуре (Т=200С) ползучесть не проявляется, а возникает при высоких температурах (для стали при Т=4000С). Причем на участках ВВ’ и DE’, назы