Предел прочности на растяжение при изгибе мпа

Преде́л про́чности — механическое напряжение , выше которого происходит разрушение материала. Иначе говоря, это пороговая величина, превышая которую механическое напряжение разрушит некое тело из конкретного материала. Следует различать статический и динамический пределы прочности. Также различают пределы прочности на сжатие и растяжение.
Величины предела прочности[править | править код]
Статический предел прочности[править | править код]
Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).
Динамический предел прочности[править | править код]
Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.
Предел прочности на сжатие[править | править код]
Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.
Предел прочности на растяжение[править | править код]
Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)
Другие прочностные параметры[править | править код]
Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».
Прочностные особенности некоторых материалов[править | править код]
Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.
У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и предела прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.
Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами, составляющими тело. При увеличении расстояния между атомами они начинают притягиваться, причем на критическом расстоянии сила притяжения по абсолютной величине максимальна. Напряжение, отвечающее этой силе, называется теоретической прочностью на растяжение и составляет σтеор ≈ 0,1E, где E — модуль Юнга . Однако на практике наблюдается разрушение материалов значительно раньше, это объясняется неоднородностями структуры тела, из-за которых нагрузка распределяется неравномерно.
Некоторые значения прочности на растяжение в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²)[1]:
Материалы | , МПа | |
---|---|---|
Бор | 5700 | 0,083 |
Графит (нитевидный кристалл) | 2401 | 0,024 |
Сапфир (нитевидный кристалл) | 1500 | 0,028 |
Железо (нитевидный кристалл) | 1300 | 0,044 |
Тянутая проволока из высокоуглеродистой стали | 420 | 0,02 |
Тянутая проволока из вольфрама | 380 | 0,009 |
Стекловолокно | 360 | 0,035 |
Мягкая сталь | 60 | 0,003 |
Нейлон | 50 | 0,0025 |
Примечания[править | править код]
- ↑ Диапазон пределов прочности для стали составляет 500—3000 МПа (Б. Н. Арзамасов, В. А. Брострем, Н. А. Буше и др. Конструкционные материалы. Справочник. — М.: Машиностроение, 1990. — 688 с.).
Источник

Когда материал растягивают в разные стороны, возникает стресс растяжения, и в результате материал разрывается. Предельное значение силы, при которой происходит разрыв, называется пределом прочности на растяжение (прочность на разрыв).
Предел прочности на растяжение измеряют у таких материалов, как сплавы, композиты, керамические материалы и пластики. Он измеряется в МПа, это сила, приложенная к площади, т.е. кг/см2. Чем выше это значение, тем материал более устойчив к усилиям на растяжение.
Во время испытания перед разрушением материал проходит «стадию колокола» (см. рис. 2).
Это испытание помогает понять прочность материала.
Рис. 1 Рис. 2 Рис. 3 |
Прочность на сжатие (МПа)
Сдавливая образец материала, имитируется жевательная нагрузка на конструкцию. Во время испытания материал сдавливается, приобретает форму бочки (Рис.5). В результате нагрузки возникает стресс растяжения в горизонтальных направлениях и в итоге материал разрушается.
Прочность на сжатие измеряется в МПа. Чем выше значение, тем лучше сопротивление материала нагрузкам на сжатие и тем материал более стабильный.
Проводят измерения для композитных материалов и цементов.
Рис. 4 Рис. 5 Рис. 6 |
3. Модуль эластичности (ГПа) / Модуль Е / Модуль Юнга / Модуль гибкости.
Свойства твердости и упругости материалов измеряются в ГПа.
Модуль эластичности отражает сопротивление материала внешней нагрузке, в данном случае на изгиб. С материалом не происходит необратимой деформации, после устранения внешней нагрузки он возвращается в исходное состояние. То есть в данном случае, в отличие от других испытаний, материал не разрушается.
Трех-точечный тест на изгиб. Брусок материала устанавливается на 2 опоры и прикладывают к нему силу F (рис. 7 и 8).
Нагрузка увеличивается только до того момента, когда материал начинает изгибаться (см. рис. 9). Чем выше это значение, тем материал более жесткий.
Рис. 8 | Рис. 9 |
Жесткость важна при выборе реставрационного материала, поскольку совсем не нужно, чтобы материал существенно отклонялся под воздействием нагрузки. Типичный пример, это внутрипульпарные штифты. Его жесткость должна соответствовать жесткости дентина.
Для эластичных оттискных материалов желательны, напротив, малые значения, поскольку в этом случае оттиск будет легко извлекаться изо рта пациента.
Прочность на изгиб (МПа)
Для ее измерения также используется трех-точечный тест. В данном случае нагрузка прикладывается, пока материал не разрушится (см. Рис. 11).
Прочность на изгиб – это способность материала быть устойчивым к переломам при нагрузке. Она измеряется в МПа, мегапаскалях.
Рис. 10 | Рис. 11 |
Данное испытание напоминает нагрузку на мост. Высокое значение прочности на изгиб означает, что мост обладает высокой устойчивостью к перелому.
5. Предел усталости – циклические нагрузки
Сначала проводится испытание на прочность на изгиб для определения предельной прочности материала (МПа). Затем берется нагрузка ниже, чем вышеуказанный предел прочности. В той же конфигурации трех-точечной нагрузки последовательно циклически нагружается материал. Затем отмечают, сколько циклов выдерживает материал до поломки.
Данный тест имитирует жевательные нагрузки на мост. Чем больше циклов выдерживает материал, тем лучше.
Усталость материалов. При воздействии большого числа циклических нагрузок на протез может наступить разрушение материала. Разрушающее напряжение (предел усталости) оказывается при этом значительно ниже предела прочности.
Причины усталости до сих пор не вполне ясны. Микроскопическое исследование образцов, подвергнутых многократной переменной нагрузке, показало, что в зернах материала после некоторого числа нагружений появляется ряд черточек, свидетельствующих о наличии сдвигов частей зерен. Под дальнейшим действием нагрузки черточки превращаются в тончайшие трещинки, которые сливаются в трещину. Около нее и сосредоточивается дальнейшее разрушение.
Трещина с каждым нагружением растет, и, когда поперечное сечение достаточно уменьшится, наступает разрушение. Образовавшаяся трещина действует подобно выточке, т. е. вызывает концентрацию напряжения и снижает сопротивление. Момент разрушения приближается незаметно. Конструкция, которой грозит разрушение, работает безупречно, но наконец внезапно происходит разрушение, причем при незначительной нагрузке.
Очень часто причинами усталостных изломов служат резкие изменения формы деталей (резкие переходы по толщине, надрезы, трещины на поверхности, поры и т. д.), вызывающие концентрацию напряжения. Так как усталостные трещины появляются вокруг этих участков, то борьба с усталостью, помимо подбора более прочных материалов, заключается в упрочнении его поверхности. Так, для металлов это достигается химико-термической обработкой, механической обработкой (шлифовка, полировка), закалкой токами высокой частоты. Эти меры позволяют повысить предел усталости на несколько десятков процентов. В отношении пластмасс большое значение имеет также правильный режим полимеризации, не вызывающий образования пор в протезах.
Предел прочности некоторых стоматологических материалов:
Материал | Прочность на растяжение (МРа) | Прочность на сжатие (МРа) |
Дентин зуба | ||
Эмаль зуба | ||
Стом.амальгама | 48-69 | 310-483 |
Золото | 414-828 | — |
Композиты | 34-62 | 200-345 |
Ненаполненные акриловые пластмассы | ||
Фарфор | ||
Хромо-никелевый сплав | — |
Упругость. Способность материала изменять форму под действием внешней нагрузки и восстанавливать форму после снятия этой нагрузки называется упругостью. Характерным примером упругих свойств материала может служить изгиб стальной проволоки, растяжение металлической пружины, сдавления протеза из полиамидной пластмассы, куска гидроколоидной массы. После удаления силы все эти тела приобретают свою форму. Но возврат к прежней форме может произойти лишь в случае, если приложенная сила не превысила определенной величины, называемой пределом упругости. Пределом упругости называют максимальную нагрузку, при которой материал после деформации и снятия нагрузки полностью восстанавливает свою форму и размеры. Если нагрузка превысит предел упругости, то после снятия ее материал полностью не восстановится до первоначального состояния, появится остаточная деформация.
Материалы, применяемые для изготовления зубных протезов и аппаратов, обладают различной упругостью. Некоторые конструкции должны обязательно обладать упругими свойствами, так как они постоянно находятся под силовым воздействием, а появление остаточной деформации делает их непригодными (кламмеры, дуги, базисы протезов и т. д.).
В других случаях проявление упругих свойств мешает проведению некоторых технологических этапов. Так, например, штамповка коронок, возможна, если металл будет находиться в состоянии наименьшей упругости.
Металлы могут по-разному проявлять упругость в зависимости от их механической и термической обработки. Сталь увеличивает упругость при обработке ее молотком или при протягивании, а также при закаливании.
Все материалы обладают упругими свойствами в определенных температурных интервалах. Для металлов эти интервалы достигают сотен градусов, у пластмасс они значительно меньше. Для базисных пластмасс они измеряются десятками градусов.
Упругость материала определяют на образцах, которые укрепляют в приборах типа гидравлического
пресса и подвергают нагружению. Измеряют изменение длины образца при максимальной нагрузке, не вызывающей остаточной деформации, после снятия которой образец принимает первоначальную длину. Расчет ведется на 1 мм2.
Понятно, что при определении нагрузок, допускаемых на различные участки протезов, знание предела упругости материала, из которого он изготовлен, является совершенно необходимым, так как нагрузка выше предела упругости приводит к изменению формы протеза, а следовательно, и к невозможности пользования им.
Если продолжать нагружать образец, то он постепенно начинает удлиняться, а его поперечное сечение становится меньше, причем по снятии нагрузки образец не возвращается к прежним размерам. Чем больше образец способен удлиняться, а его поперечное сечение сужаться, тем пластичнее материал.
В противоположность пластичным материалам хрупкие материалы под действием нагрузки разрушаются без изменения формы. Хрупкость, как правило, — свойство отрицательное, поэтому в ортопедической стоматологии чаще всего употребляют не только прочные и упругие материалы, но и в определенной мере пластичные.
Пластичность. Способность материала, не разрушаясь, изменять форму под действием нагрузок и сохранять эту форму после того, как нагрузка перестает действовать. Этим свойством обладают многие оттискные массы, воск, гипс, металлы.
Все пластичные материалы, таким образом, имеют резко выраженную остаточную деформацию. Пластичность необходима оттискным материалам, металлам, используемым для получения изделий методом штамповки, пластмассам, из которых формируются базисы протезов, пломбировочным материалам.
Иногда материал выбирают лишь благодаря его свойству приобретать пластичное состояние. Это относится в первую очередь к оттискным материалам, пластмассам. Для получения максимальной пластичности металла его подвергают особой термической обработке — отжигу, воск и оттискные массы подогревают, гипс смешивают с водой и т. д. Обычно обработка, повышающая пластичность, снижает сопротивление деформированию и наоборот.
Вязкость. Способность материала под действием растягивающих нагрузок вытягиваться. Этот вид деформации характеризуется тем, что исследуемый образец увеличивается по размерам в направлении приложенной силы (обычно по длине) и суживается в поперечном сечении.
Некоторые материалы обладают большой вязкостью (золото, серебро, железо и др.). Другие этой способностью не обладают (чугун, фарфор и др.). Они относятся к группе хрупких материалов.
Таким образом, хрупкость является свойством, противоположным вязкости.
При испытании различных материалов, в частности пластмасс, широко используют методику определения ударной вязкости. Удельной ударной вязкостью называется работа, затраченная на разрушение образца, деленная на площадь его поперечного сечения. Определение ударной вязкости производится на маятниковом копре MK-0,5-1. Прибор состоит из массивного основания, на котором смонтировано устройство маятникового типа. Маятник со сменным грузом (10—15—30 кг), укрепленный на оси станины, закрепляют на определенной высоте с помощью защепки. По освобождении зажима маятник свободно падает и производит удар по образцу. Чем прочнее образец, тем на меньшую высоту поднимается маятник после удара, т. е. тем большая работа была затрачена на ударное разрушение образца. Чем меньше ударная вязкость, тем более хрупким является материал.
Приведенные механические свойства материалов позволяют определить жесткость материалов. Способность элементов конструкции сопротивляться деформациям под действием внешних сил называется жесткостью.
Следует помнить, что при расчетах необходимых размеров деталей конструкции при предполагаемой нагрузке всегда придерживаются правила, что материал не должен не только разрушаться, но и деформироваться. Поэтому при расчетах всегда исходят из четырехкратного запаса прочности, т. е. если предел прочности углеродистой стали равен 90 кг/мм2, то допустимая нагрузка должна быть 22—23 кг/мм2. Если же рабочая нагрузка превышает эти цифры, то следует увеличивать размеры данной детали. Так, например, если нам известно, что сила, приложенная к протезу в момент разжевывания, равна 60 кг, а предел прочности пластмассы составляет 1000 кг/см2, то пластинка должна иметь в самой наименьшей части ширину, равную 2,5 см, при толщине 1 мм.
Литература:
1. Попков В.А. Стоматологическое материаловедение: Учебное пособие/ В.А. Попков. О.В.Нестерова, В.Ю.Решетняк, И.Н.Аверцева.//М. – МЕДпресс-информ. – 2009. – 400с.
2. Крег Р. Стоматологические материалы: свойства и применение/ Р.Крег, Дж.Пауэрс, Дж.Ватага// — 2005. – 304с.
3. https://article-factory.ru/medicina/zubotehnicheskoe-materialovedenie/139-mehanicheskie-svojstva.html
4. www.infodent.ru
Дата добавления: 2015-10-27; просмотров: 11707 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Источник
ПРОЧНОСТЬ БЕТОНА
Прочность — главное свойство бетона
Важнейшим свойством бетона является прочность. Лучше всего бетон сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в некоторых конструкциях учитывается прочность на растяжение или на растяжение при изгибе.
Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может определяться и в другом возрасте, например 3; 7; 60; 90; 180 суток.
В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%.
Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: Вb1; Вb1,5; Вb2; Вb2,5; Вb3,5; Вb5; Bb7,5; Вb10; Вb12,5; Вb15; Вb20; Вb25; Вb30; Вb35; Вb40; Вb50; Вb55; Вb60. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПах10).
Тяжелый бетон имеет следующие марки при сжатии: Мb50; Мb75; Мb100; Мb150; Мb200; Мb250; Мb300; Мb350; Мb400; Мb450; Мb500; Мb600; Мb700; Мb800.
Между классом бетона и его средней прочностью при коэффициенте вариации прочности бетона n = 0,135 и коэффициенте обеспеченности t = 0,95 существуют зависимости:
Вb = Rbх0,778, или Rb = Вb/ 0,778.
Соотношение классов и марок для тяжелого бетона
При проектировании конструкций обычно назначают класс бетона, в отдельных случаях — марку. Соотношение классов и марок для тяжелого бетона по прочности на сжатие приведены в табл. 1.
Прочность при растяжении. С прочностью бетона на растяжение приходится иметь дело при проектировании конструкций и сооружений, в которых не допускается образование трещин. В качестве примера можно привести резервуары для воды, плотины гидротехнических сооружений и др. Бетон на растяжение подразделяют на классы: Вt0,8; Bt1,2; Bt1,6; Вt2; Bt2,4; Вt2,8; Вt3,2 или марки: Рt10; Bt15; Bt20; Bt25; Bt30; Bt35; Вt40.
Прочность на растяжение при изгибе. При устройстве бетонных покрытий дорог, аэродромов назначают классы или марки бетонов на растяжение при изгибе.
Классы: Вbt0,4; Вbt0,8; Вbt1,2; Bbt1,6; Вbt2,0; Вtb2,4; Вbt2,8; Вbt3,2; Вbt3,6; Вbt4,0; Bbt4,4; Вbt4,8; Вbt5,2; Вbt5,6; Вbt6,0; Вbt6,4; Вbt6,8; Вbt7,2; Вbt8.
Таблица 1. Соотношение классов и марок при сжатии для тяжелого бетона
Класс | Rb ,МПа | Марка | Класс | Rb, МПа | Марка |
BbЗ,5 | 4,5 | Mb 50 | Bb30 | 39,2 | Mb 400 |
Bb5 | 6,5 | Mb 75 | Bb35 | 45,7 | Mb 450 |
Bb7,5 | 9,8 | Mb 100 | Bb40 | 52,4 | Mb 500 |
Bb10 | 13 | Mb 150 | Bb45 | 58,9 | Mb 600 |
Bb12,5 | 16,5 | Mb 150 | Bb50 | 65,4 | Mb 700 |
Bb15 | 19,6 | Mb 200 | Bb55 | 72 | Mb 700 |
Bb20 | 26,2 | Mb 250 | Bb60 | 78,6 | Mb 800 |
Bb25 | 32,7 | Mb 300 |
Марки: Рbt5; Рbt10; Рbt15; Рbt20; Рbt25; Рbt30; Рbt35; Рbt40; Рbt45; Рbt50; Рbt55; Рbt60; Рbt65; Рbt70; Рbt75; Рbt80; Рbt90; Рbt100.
Технологические факторы, влияющие на прочность бетона.
Технологические факторы, влияющие на прочность бетона. На прочность бетона влияет ряд факторов: активность цемента, содержание цемента, отношение воды к цементу по массе (В/Ц), качество заполнителей, качество перемешивания и степень уплотнения, возраст и условия твердения бетона, повторное вибрирование.
Активность цемента. Между прочностью бетона и активностью цемента существует линейная зависимость Rb = f(RЦ). Более прочные бетоны получаются на цементах повышенной активности.
Содержание цемента. С повышением содержания цемента в бетоне его прочность растет до определенного предела. Затем она растет незначительно, другие же свойства бетона ухудшаются. Увеличивается усадка, ползучесть. Поэтому не рекомендуется вводить на 1 м3 бетона более 600 кг цемента.
Водоцементное отношение. Прочность бетона зависит от В/Ц. С уменьшением В/Ц она повышается, с увеличением — уменьшается. Это определяется физической сущностью формирования структуры бетона. При твердении бетона с цементом взаимодействует 15-25% воды. Для получения же удобоукладываемой бетонной смеси вводится обычно 40-70% воды (В/Ц = — 0,4…0,7). Избыточная вода образует поры в бетоне, которые снижают его прочность.
При В/Ц от 0,4 до 0,7 (Ц/В = 2,5… 1,43) между прочностью бетона Rв , МПа, активностью цемента Rц, МПа, и Ц/В существует линейная зависимость, выражаемая формулой:
Rb = A Rц (Ц/В – 0,5).
При В/Ц 2,5) линейная зависимость нарушается. Однако в практических расчетах пользуются другой линейной зависимостью:
Rb = A1 Rц (Ц/В + 0,5).
Ошибка в расчетах в этом случае не превышает 2-4 % вышеприведенных формулах: А и А1 — коэффициенты, учитывающие качество материалов. Для высококачественных материалов А = 0,65, А1 = 0,43, для рядовых — А = 0,50, А1 = 0,4; пониженного качества — А = 0,55, А1 = 0,37.
Прочность бетона при изгибе Rbt, МПа, определяется по формуле:
Rbt =A` R` ц (Ц/В — 0,2),
где Rц — активность цемента при изгибе, МПа;
А’ — коэффициент, учитывающий качество материалов.
Для высококачественных материалов А’ = 0,42, для рядовых — А’ = 0,4, материалов пониженного качества — А’ = 0,37.
Качество заполнителей. Не оптимальность зернового состава заполнителей, применение мелких заполнителей, наличие глины и мелких пылевидных фракций, органических примесей уменьшает прочность бетона. Прочность крупных заполнителей, сила их сцепления с цементным камнем влияет на прочность бетона.
Качество перемешивания и степень уплотнения бетонной смеси существенно влияют на прочность бетона. Прочность бетона, приготовленного в бетоносмесителях принудительного смешивания, вибро — и турбосмесителях выше прочности бетона, приготовленного в гравитационных смесителях на 20-30%. Качественное уплотнение бетонной смеси повышает прочность бетона, так как изменение средней плотности тонной смеси на 1% изменяет прочность на 3-5%.
Влияние возраста и условий твердения. При благоприятных температурных условиях прочность бетона растет длительное время и изменяется по логарифмической зависимости:
Rb(n) = Rb(28) lgn / lg28,
где Rb(n) и Rb(28) — предел прочности бетона через n и 28 суток, МПа; lgn и lg28 — десятичные логарифмы возраста бетона.
Эта формула осредненная. Она дает удовлетворительные результаты для бетонов, твердеющих при температуре 15-20 °С на рядовых среднеалюминатных цементах в возрасте от 3 до 300 суток. Фактически же прочность на разных цементах нарастает поразному.
Рост прочности бетона во времени зависит, в основном, от минерального и вещественного составов цемента. По интенсивности твердения портландцементы подразделяют на четыре типа (табл. 2).
Интенсивность твердения бетона зависит от В/Ц. Как видно из данных, приведенных в табл. 3, более быстро набирают прочность бетоны с меньшим В/Ц.
На скорость твердения бетона большое влияние оказывает температура и влажность среды. Условно-нормальной считается среда с температурой 15-20 °С и влажностью воздуха 90-100%.
Таблица 2. Классификация портландцементов по скорости твердения
Тип цемента | Минеральный и вещественный составы портландцементов | К = Rbt(90) / Rbt(28) | К =Rbt(180) / Rbt(28) |
I | Алюминатный (С3А = 1 2%) | 1-0,5 | 1,0-1,1 |
II | Алитовый (С3S> 50%, С3А =8) | 1,05-1,2 | 1,1-1,3 |
III | Портландцемента сложного минерального и вещественного состава (пуццолановый портландцемент c содержанием в клинкере С3А = 1 4%, шлакопортландцемент с содержанием шлака 30-40%) | 1,2-1,5 | 1,3-1,8 |
IV | Белитовый портландцемент и шлакопортландцемент с содержанием шлака более 50% | 1,6-1,7 | 1,55 |
Для сравнения предел прочности бетона, определенный по формуле:Rb(n) = Rb(28) lgn / lg28 | 1,35 | 1,55 |
Таблица 3. Влияние В/Ц и возраста на скорость твердения бетона на цементе III типа
В/Ц | Относительная прочность через сут. | |||||
1 | 3 | 7 | 28 | 90 | 360 | |
0,4 | 0,24 | 0,48 | 0,70 | 1 | 1,15 | 1,38 |
0,5 | 0,17 | 0,43 | 0,66 | 1 | 1,19 | 1,47 |
0,6 | 0,11 | 0,37 | 0,64 | 1 | 1,21 | 1,55 |
0,7 | 0,08 | 0,33 | 0,64 | 1 | 1,35 | 1,67 |
По формуле | — | 0,33 | 0,58 | 1 | 1,35 | 1,77 |
Как видно из графика, приведенного на рис. 1, прочность бетона в 28-суточном возрасте, твердевшего при 5 °С, составила 68%, при 10°С — 85%, при 30 °С — 115% от предела прочности бетона, твердевшего при температуре 20 °С. Те же зависимости наблюдаются и в более раннем возрасте. То есть интенсивнее набирает прочность бетон при более высокой температуре и, напротив, медленней — при ее понижении.
При отрицательной температуре твердение практически прекращается, если не снизить температуру замерзания воды введением химических добавок.
Рис. 1. Рост прочности бетона при разной температуре
Твердение ускоряется при температуре 70-100 °С при нормальном давлении или при температуре около 200 °С и давлении 0,6-0,8 МПа. Для твердения бетона требуется среда с высокой влажностью. Для создания таких условий бетон укрывают водонепроницаемыми пленочными материалами, покрывают влажными опилками и песком, пропаривают в среде насыщенного водяного пара.
Повторное вибрирование увеличивает прочность бетона до 20%. Оно должно выполняться до конца схватывания цемента. Повышается плотность. Механические воздействия срывают пленку гидратных новообразований и ускоряют процессы гидратации цемента.
Поделитесь ссылкой в социальных сетях
Источник