Правило построения эпюры при растяжении

Правило построения эпюры при растяжении thumbnail

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая. 

Сопротивление рассчитывается по формуле:

где:

  • Fl – действующие на участке l силы (Н);

  • ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

Рис. 1. Эпюра продольных сил

Рассмотрим случай:

F1 = 5 (кН);

F2 = 3 (кН);

F3 = 6 (кН).

Вычислим:

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

Рис. 2

Дано:

Решение.

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

По полученным данным строим эпюру (рис. 3).

Рис. 3

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Источник

1. На рисунке проводиться ось ОХ, совпадающая с продольной осью стержня.

2. Под рисунком стержня проводятся две базовые нулевые линии, параллельно продольной оси стержня. Одна для эпюры продольной силы Nz

Вторая базовая нулевая линия для эпюры нормальных напряжений (Мпа).

3. Стержень разбивается на участки. Для границ участков проводятся вертикальные линии в точках приложения нагрузки и изменения площади поперечного сечения вниз до пересечения с базовыми нулевыми линиями. Нумерация участков начинается со свободной стороны стержня для задачи статически определимой. Если задача статически неопределимая, то нумерация выполняется слева направо.

4. Для определения значения продольной силы используется метод сечений. В середине участка проводится сечение. Указывается направление продольной силы. Положительным считается направление продольной силы, направленной от сечения (растягивает). Значение продольной силы Nz определяется из условия равновесия отсечённой части (сумма проекций на ось ох всех действующих сил равна нулю 0).

5. Вычисляем значение нормальных напряжений.

6. Положительные значения продольной силы и нормального напряжения откладываем вверх от базовой нулевой линии, отрицательные вниз.

7. Проверяем правильность решения задачи по эпюре продольной силы. В точках, где приложена сосредоточенная сила, на эпюре должен быть скачок равный значению продольной силы.

8. Условие прочности проверяем по эпюре нормальных напряжений. Максимальные напряжения, возникающие в конструкции, не должны превышать допускаемых.

Пример №1: Построить эпюры продольной силы N и нормального напряжения σ, проверить на прочность стальной стержень, закрепленный с одной стороны (статически определимая задача). Р1 = 10кН Р2 = 15кН

Р3 =15кН

=100 Мпа; А1 = F; А2 = 2F; F = 100 мм2

Решение:

Читайте также:  Действия при растяжении связок ноги

Параллельно продольной оси стержня проводим две базовые нулевые линии для продольной силы и нормального напряжения.

Разбиваем стержень на участки, начиная со свободной стороны. Проводим вниз вертикальные линии в точках приложения сил и изменения площади поперечного сечения до пересечения с нулевыми линиями. Нумерация участков начинается со свободной стороны стержня.

1 участок:

— на первом участке проводим сечение, перпендикулярное продольной оси, мысленно отбрасываем большую часть и рассматриваем меньшую часть стержня. Заменяем действие отброшенной части на оставленную продольной силой N1. Положительным считается действие от сечения (растягивает).

Рассматриваем равновесие оставленной части, проецируя действующие силы на ось ОХ:

Определяем продольную силу на первом участке:

-N1+ Р1=0 следовательно N1 = Р1=10 кН

Определяем нормальное напряжение на первом участке

2 участок:

-N2+ Р1 — Р2=0 следовательно N2 = Р1-Р2 =10-15= -5 кН

3 участок:

-N3+ Р1 — Р2=0 следовательно N3 = Р1-Р2 =10-15= -5 кН

4 участок:

-N4+ Р1 — Р2+Р3=0 следовательно N4 = Р1-Р2+Р3=10-15+15= 10 кН

Рис. 10.

Метод сечений для определения продольной силы.

Для построения эпюр продольной силы и нормального напряжения задаёмся произвольным масштабом (например: одна клеточка -5 кН и -25 мегапаскалей). Строим эпюры продольной силы и нормального напряжения, откладывая положительные значения вверх от базовой нулевой линии, отрицательные вниз.

Проверяем правильность решения задачи по эпюре продольной силы, в точке приложения сосредоточенной силы на эпюре должен быть скачок, равный действующей силе.

По эпюре нормального напряжения проверяем условие прочности максимальные напряжения должны быть меньше или равны допустимым, значит прочность обеспечена.

Рис.11.

Эпюры продольной силы N и нормального напряжения σ.

СПИСОК ЛИТЕРАТУРЫ

1. Рубашкин А.Г. Лабораторные работы по сопротивлению материалов.- М.: Высшая школа, 1961.-159с.

2. Афанасьев A.M., Марьин В.А. Лабораторный практикум по сопротивлению материалов.- М.: Наука, 1975.-284с.

3. Феодосьев В.И. Сопротивление материалов.- М.: Наука, 1979.-559с.

4. Писаренко Г.С. Сопротивление материалов.- Киев.: Высшая школа, 1973.-667с.

Источник

Как построить эпюры Q и М. При прямом поперечном изгибе в поперечных сечениях балки возникает два внутренних силовых фактора – поперечная сила Qy и изгибающий момент Мх. Для построения эпюр этих внутренних силовых факторов важно знать, чему они численно равны (определение) и правила знаков.

Поперечная сила, возникающая в сечении балки – это внутреннее усилие, равное алгебраической сумме проекций внешних сил, действующих по одну сторону от этого сечения на плоскость поперечного сечения.

 Правило знаков. Положительная поперечная сила поворачивает рассматриваемую часть балки по часовой стрелке. (кратко – по часовой плюс, против – минус).

Изгибающий момент в сечении балки – это внутреннее усилие, равное алгебраической сумме моментов внешних сил, действующих по одну сторону от этого сечения, относительно центра тяжести сечения.

Правило знаков. Положительный изгибающий момент соответствует (т.е. вызывает) растяжению нижних волокон.

2014-09-13 12-37-38 Скриншот экрана

Для отыскания опасного сечения строят эпюры Qy и Мх, используя метод сечения, либо метод характерных точек. Эпюра – это график, показывающий изменение того или иного фактора по оси балки. Сечения расставляются на характерных участках, характерный участок балки – это участок между какими-либо изменениями. Изменения – это сосредоточенные силы или моменты, начало и конец распределенной нагрузки. Характерные точки – это точки, сколь-либо заметные на балке, т.е. точки приложения сосредоточенных сил, моментов и т.д.

Для того чтобы вычислить поперечную силу и изгибающий момент в произвольном сечении, необходимо мысленно рассечь плоскостью в этом месте балку и часть балки (любую), лежащую по одну сторону от рассматриваемого сечения, отбросить. Как правило, отбрасывают ту часть балки, которая представляется наиболее сложной. Затем по действующим на оставленную часть балки внешним силам надо найти искомые значения Qy и Мх, причем знак их надо определить в соответствии с принятыми ранее правилами знаков.

При построении эпюры слева направо отбрасывается правая часть балки, а Qy и Мх находятся по силам, действующим на левую часть. При построении эпюры справа налево, наоборот, отбрасывается левая часть, Qy и Мх определяются по силам, действующим на правую часть балки.

Для построения эпюр проводят нулевые линии под изображением балки. Тогда каждому сечению балки соответствует определенная точка этой линии. Положительные значения поперечных сил откладывают в принятом масштабе перпендикулярно нулевой линии вверх от нее, отрицательные — вниз.

При построении эпюры Мх у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. — вниз, а отрицательные — вверх от оси балки. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх.

Найденные значения поперечной силы и изгибающего момента соединяют соответствующими линиями.

Построенные эпюры Qуи Мxзаштриховывают прямыми линиями, перпендикулярными нулевой линии. Каждый штрих таким образом характеризует значение внутреннего силового фактора Qу или Мx,действующих в дан­ном сечении балки. На эпюрах ставятся знаки.

Читайте также:  Растяжение мышц руки плечевого сустава

Проверка построения эпюр. Следует хорошо усвоить дифференциальные зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом (следствия из теоремы Д.И. Журавского), что позволит  быстро и правильно строить эпюры. Как проверить эпюры Q и М ? Необходимо запомнить следующие правила (проверки построения эпюр):

  1. На участке балки, где отсутствует распределенная нагрузка, эпюра Qy – прямая, параллельная базовой линии, а эпюра Мх — наклонная прямая.
  2. Под сосредоточенной силой на эпюре Qy наблюдается скачок, численно равный приложенной внешней силе, а на эпюре Мх – излом.
  3. В точке приложения сосредоточенной пары сил (момента) на эпюре момента происходит скачок на размер момента этой пары, а эпюра Qy не претерпевает изменений.
  4. На участке действия равномерно распределенной нагрузки эпюра Qy выражается наклонной прямой, а эпюра Мх – параболой, обращенной выпуклостью навстречу действию распределенной нагрузки.
  5. На  участках балки, где эпюра Q положительнаизгибающий момент с увеличением координаты z увеличивается, и, наоборот, там, где Q < 0, изгибающий момент уменьшается.
  6. Если на участке действия распределенной нагрузки эпюра Q пересекает базовую линию, то в этом сечении изгибающий момент принимает экстремальное значение.
  7. Если на границе действия распределенной нагрузки не приложено сосредоточенных сил, то на эпюре Qy участок, параллельный оси абсцисс, переходит в наклонный без скачка, а параболическая и наклонная части эпюры Мх сопрягаются плавно без изгиба.
  8. Изгибающий момент в концевых сечениях балки всегда равен нулю, за исключением случая, когда в концевом сечении действует сосредоточенная пара сил. В этом случае изгибающий момент в концевом сечении балки равен моменту действующей пары сил.
  9. В сечении, соответствующем заделке, Qy и Мх численно равны опорной реакции и реактивному моменту заделки.

Последовательность решения задач на построение эпюр: 

1)   определить реакции опор балки (по двум уравнениям моментов: одно – относительно левой опоры, второе – относительно правой), а затем обязательно проверить правильность решения по уравнению проекций на ось, перпендикулярную балке. Следует помнить, что допущенная ошибка при определении опорных реакций не позволит правильно решить задачу;

2)  построить эпюру поперечных сил (можно использовать метод построения по характерным сечениям либо точкам);

3)  построить эпюру изгибающих моментов (методы построения аналогичны);

4)  произвести проверку правильности построения эпюр согласно дифференциальных зависимостей.

Источник

В общем случае при действии внешних нагрузок в поперечных сечениях элементов конструкции возникают три внутренних силовых фактора: поперечная сила Q, продольная сила N и изгибающий момент M.

Продольная сила N в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на ось балки всех сил, действующих по одну сторону от рассматриваемого сечения.

Поперечная сила Q в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех сил, действующих по одну сторону от рассматриваемого сечения.

Изгибающий момент М в произвольном поперечном сечении балки численно равен алгебраической сумме моментов всех сил, действующих по одну сторону от рассматриваемого сечения.

Для определения внутренних силовых факторов используется метод сечений. При построении эпюр необходимо руководствоваться правилами знаков поперечных, продольных сил и изгибающих моментов (рисунок 2.1):

– продольная сила N считается положительной, если внешние силы относительно рассматриваемого сечения вызывают растяжение;

– поперечная сила Q считается положительной, если внешние силы относительно рассматриваемого сечения вращают отсеченную часть балки по ходу часовой стрелки;

– изгибающий момент M считается положительным, если внешние нагрузки относительно рассматриваемого сечения растягивают нижние волокна.

Рисунок 2.1 – Правило знаков внутренних силовых факторов

Для определения величины опорных реакций применяют три известных уравнения статики:

, , ,

где А, В – моментные точки, которыми чаще всего выступают опоры.

Причем последнее уравнение служит для проверки правильности определения неизвестных реакций. Следует также отметить, что если в результате расчета реакция получается отрицательной, то ее направление на расчетной схеме изменяют на противоположное, а само значение реакции при этом будет положительным.При составлении уравнений статики для определения опорных реакций рекомендуется придерживаться правил, принятых в теоретической механике, или же следующих правил знаков:

— сила принимается положительной, если ее направление совпадает с выбранным положительным направлением координатной оси;

— моменты сил, вращающие в одну сторону относительно моментной точки, имеют одинаковый знак.

Построение эпюр внутренних силовых факторов в системах с жестким защемлением производится без определения реакций, действующих в заделке, путем рассмотрения характерных участков конструкции со свободного (незащищенного) конца.

Границами характерных участков балки являются опорные сечения, точки приложения сосредоточенных сил или моментов, начало и окончание действия распределенной нагрузки. В рамах к характерным сечениям относятся также узлы. На каждом участке проводится произвольное сечение на расстоянии z от начала соответствующего участка, составляются в общем виде выражения для действующих ВСФ с учетом правила знаков, и в полученные выражения подставляются границы характерного сечения. Полученные значения ВСФ откладываются на соответствующих эпюрах под характерными участками перпендикулярно нулевой линии.

Читайте также:  При растяжении голеностопа поможет

После построения эпюр производится контроль правильности их построения:

а)Если участок балки нагружен сосредоточенной силой, то эпюра поперечных сил на данном участке будет очерчена прямой линией, параллельной нулевой линии эпюры. Изгибающий момент на участке будет изменяться по линейному закону.

б) На участках с распределенной нагрузкой эпюра очерчивается прямой наклонной линией, а эпюра – квадратной параболой с выпуклостью, направленной навстречу действию распределенной нагрузки. Если на участке с эпюра пересекает нулевую линию эпюры, то под этой точкой пересечения изгибающий момент будет иметь экстремальной значение.

в) В сечении, где приложена внешняя сосредоточенная сила, на эпюре Q будет скачок на величину и в направлении действия этой внешней силы.

г) В сечении, где приложен внешний сосредоточенный момент, на эпюре М будет наблюдаться скачок на величину и в направлении действия этого внешнего момента.

В отличие от балок, ось рамы представляет собой ломаную линию. Нулевые линии эпюр также представляют в виде ломаных линий, а каждый характерный участок можно рассматривать как отдельную балку. При определении величин продольных и поперечных сил применяется правило знаков, представленное на рисунке 2.1. При построении эпюр Q и N положительные ординаты откладывают с внешней стороны контура рамы, а отрицательные – внутри контура. При составлении выражения изгибающего момента руководствуются произвольным правилом знаков. Например, все нагрузки, которые будут сжимать наружные волокна рамы, принимают со знаком «плюс». В любом случае, эпюра М строится со стороны сжатого волокна, причем знак на ней не указывается. Также следует помнить, что узлы рамы должны находиться в равновесии, то есть сумма изгибающих моментов в примыкающих к узлу сечениях должна равняться нулю или, если в этом узле приложен внешний сосредоточенный изгибающий момент, значению этого момента.

Пример построения эпюр внутренних силовых факторов для балки

Исходные данные: расчетная схема балки с указанием численных величин нагрузок и линейных размеров.

Требуется: построить эпюры внутренних силовых факторов.

В поперечных сечениях балки возникают два ВСФ: поперечная сила (Q) и изгибающий момент (M). Вычерчиваем заданную балку с указанием всех нагрузок и линейных размеров. Определяем реакции опор.

;

;

;

;

Проверка правильности определения реакций:

.

Разбиваем балку на участки, на каждом из которых проводим произвольное поперечное сечение на расстоянии z от начала соответствующего участка (см. рисунок 2.2, а). Изображаем нулевые линии для построения эпюр поперечных сил (эпюра Q) и эпюры изгибающего момента (эпюра М). Записываем в общем виде выражения для определения ВСФ для каждого участка балки и при помощи полученных уравнений рассчитываем их численные значения в характерных сечениях.

Рисунок 2.2 – Расчетная схема балки и эпюры внутренних силовых факторов

1 участок: .

;

.

2 участок: .

;

Так как на этом участке эпюра Q пересекает нейтральную линию, то в этой точке пересечения изгибающий момент будет иметь экстремальное значение:

;

откуда ;

.

3 участок: .

;

Полученные точки соединяем линиями, замыкающими поле эпюры. В поле эпюры в кружке ставим знак рассматриваемого внутреннего силового фактора и наносим штриховку. Линии штриховки перпендикулярны нулевой линии эпюры (рисунок 2.2, б, в).

Пример построения эпюр внутренних силовых факторов в раме

Исходные данные: расчетная схема рамы с указанием численных величин нагрузок и линейных размеров.

Требуется: построить эпюры внутренних силовых факторов.

Вычерчиваем заданную раму (рисунок 2.3, а) с указанием всех нагрузок и линейных размеров в численном виде. Определяем реакции опор:

;

;

;

;

;

.

Проверка правильности определения реакций:

.

Разбиваем раму на участки, на каждом из которых проводим произвольное поперечное сечение на расстоянии z от начала соответствующего участка (см. рисунок 2.3, а). Изображаем нулевые линии для построения эпюр нормальных (эпюра N) и поперечных (эпюра Q) сил, эпюры изгибающего момента (эпюра М).

Рисунок 2.3 – Расчетная схема рамы и эпюры внутренних силовых факторов

Записываем в общем виде выражения для определения ВСФ для каждого участка рамы и при помощи полученных уравнений рассчитываем их численные значения в характерных сечениях рамы.

1 участок: .

;

;

.

2 участок: .

;

;

.

3 участок: .

;

;

.

4 участок: .

;

;

Так как на четвертом участке эпюра Q пересекает нулевую линию, требуется провести исследование на экстремум:

;

откуда ;

.

Строим эпюры поперечных и продольных сил, изгибающих моментов (рисунок 2.3, б−г). Проверяем равновесие узлов рамы (рисунок 2.3, д) – узлы уравновешены.

3 Расчетно-проектировочное задание №3. Расчет статически определимой балки при изгибе



Источник