Построить эпюры ступенчатого стержня на растяжение сжатие

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

209

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая. 

Сопротивление рассчитывается по формуле:

200

где:

  • Fl – действующие на участке l силы (Н);

  • ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

201

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

202

Рис. 1. Эпюра продольных сил

Рассмотрим случай:

F1 = 5 (кН);

F2 = 3 (кН);

F3 = 6 (кН).

Вычислим:

203

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

204

Рис. 2

Дано:

205

Решение.

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

206

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

207

По полученным данным строим эпюру (рис. 3).

208

Рис. 3

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Источник

1. На рисунке проводиться ось ОХ, совпадающая с продольной осью стержня.

2. Под рисунком стержня проводятся две базовые нулевые линии, параллельно продольной оси стержня. Одна для эпюры продольной силы Nz

Вторая базовая нулевая линия для эпюры нормальных напряжений (Мпа).

3. Стержень разбивается на участки. Для границ участков проводятся вертикальные линии в точках приложения нагрузки и изменения площади поперечного сечения вниз до пересечения с базовыми нулевыми линиями. Нумерация участков начинается со свободной стороны стержня для задачи статически определимой. Если задача статически неопределимая, то нумерация выполняется слева направо.

4. Для определения значения продольной силы используется метод сечений. В середине участка проводится сечение. Указывается направление продольной силы. Положительным считается направление продольной силы, направленной от сечения (растягивает). Значение продольной силы Nz определяется из условия равновесия отсечённой части (сумма проекций на ось ох всех действующих сил равна нулю 0).

5. Вычисляем значение нормальных напряжений.

6. Положительные значения продольной силы и нормального напряжения откладываем вверх от базовой нулевой линии, отрицательные вниз.

7. Проверяем правильность решения задачи по эпюре продольной силы. В точках, где приложена сосредоточенная сила, на эпюре должен быть скачок равный значению продольной силы.

8. Условие прочности проверяем по эпюре нормальных напряжений. Максимальные напряжения, возникающие в конструкции, не должны превышать допускаемых.

Пример №1: Построить эпюры продольной силы N и нормального напряжения σ, проверить на прочность стальной стержень, закрепленный с одной стороны (статически определимая задача). Р1 = 10кН Р2 = 15кН

Р3 =15кН

=100 Мпа; А1 = F; А2 = 2F; F = 100 мм2

Решение:

Параллельно продольной оси стержня проводим две базовые нулевые линии для продольной силы и нормального напряжения.

Разбиваем стержень на участки, начиная со свободной стороны. Проводим вниз вертикальные линии в точках приложения сил и изменения площади поперечного сечения до пересечения с нулевыми линиями. Нумерация участков начинается со свободной стороны стержня.

1 участок:

— на первом участке проводим сечение, перпендикулярное продольной оси, мысленно отбрасываем большую часть и рассматриваем меньшую часть стержня. Заменяем действие отброшенной части на оставленную продольной силой N1. Положительным считается действие от сечения (растягивает).

Рассматриваем равновесие оставленной части, проецируя действующие силы на ось ОХ:

Определяем продольную силу на первом участке:

-N1+ Р1=0 следовательно N1 = Р1=10 кН

Определяем нормальное напряжение на первом участке

2 участок:

-N2+ Р1 — Р2=0 следовательно N2 = Р1-Р2 =10-15= -5 кН

3 участок:

-N3+ Р1 — Р2=0 следовательно N3 = Р1-Р2 =10-15= -5 кН

4 участок:

-N4+ Р1 — Р2+Р3=0 следовательно N4 = Р1-Р2+Р3=10-15+15= 10 кН

Рис. 10.

Метод сечений для определения продольной силы.

Для построения эпюр продольной силы и нормального напряжения задаёмся произвольным масштабом (например: одна клеточка -5 кН и -25 мегапаскалей). Строим эпюры продольной силы и нормального напряжения, откладывая положительные значения вверх от базовой нулевой линии, отрицательные вниз.

Проверяем правильность решения задачи по эпюре продольной силы, в точке приложения сосредоточенной силы на эпюре должен быть скачок, равный действующей силе.

По эпюре нормального напряжения проверяем условие прочности максимальные напряжения должны быть меньше или равны допустимым, значит прочность обеспечена.

Рис.11.

Эпюры продольной силы N и нормального напряжения σ.

СПИСОК ЛИТЕРАТУРЫ

Читайте также:  Заговоры от растяжений на ноге

1. Рубашкин А.Г. Лабораторные работы по сопротивлению материалов.- М.: Высшая школа, 1961.-159с.

2. Афанасьев A.M., Марьин В.А. Лабораторный практикум по сопротивлению материалов.- М.: Наука, 1975.-284с.

3. Феодосьев В.И. Сопротивление материалов.- М.: Наука, 1979.-559с.

4. Писаренко Г.С. Сопротивление материалов.- Киев.: Высшая школа, 1973.-667с.

Источник

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Читайте также:  Упражнения при растяжении связок кисти

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Содержание

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.……………………………………………………………………3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость……………………………15
Задача № 5 Расчет балки на прочность при плоском изгибе…………………20
Задача №6 Расчет балки на прочность при плоском изгибе…………………23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы………………………………………………………………33

Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие.

Задание:Определить оптимальный диаметр сечения круглого стержня на каждом участке по условию прочности. Определить продольные деформации, возникающие на каждом участке стержня. Стержень изготовлен из стали:

Е = 2*105 МПа; σТ = 240 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно ([n]= 1,2…1,8). Весом стержня пренебречь. Схема стержня приведена на рис. 2.

Исходные данные:F1=17 кН; F2=28 кН; F3=7кН; l1=130 см=1,3 м;

l2=140 см=1,4 м; l3=65 см=0,65 м.

Решение:Для определения продольной силы используем метод сечений.

Эпюру продольных сил необходимо строим, руководствуясь правилом: продольная сила в любом сечении стержня равна алгебраической сумме проекций всех внешних сил, расположенных по одну сторону от сечения на ось стержня. Продольная сила считается положительной, если она соответствует деформации растяжения (направлена от сечения) и отрицательной, если она вызывает сжатие (направлена к сечению).

1.Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

1 участок (сечение 1-1) : NI = -F3 = -7 кН.

на первом участке осуществляется деформация сжатия.

2 участок (сечение 2-2): N2 = -F3 +F2 = -7+28=21 кН.

на втором участке осуществляется деформация растяжения.

3 участок (сечение 3-3) N3 =-F3 +F2+F1 = -7+28+17=38 кН.

на третьем участке осуществляется деформация растяжения.

Таким образом, в заделке действует реакция равная N3 =38кН.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе = .

2. Допускаемое напряжение вычисляем по формуле: .

Допускаемые напряжения при сжатии и растяжении для пластичного материала, при условии, что коэффициент запаса n=1,8.

=240/1,8=133,3Мпа

3. Требуемая площадь сечения определяется из формулы условия прочности на растяжения.

Þ

Площадь круглого сечения А=

1 участок:

Принимаем d1=0,09м, А1=

2 участок:

Принимаем d2=0,015 м, А2=

3 участок:

Принимаем d1=0,02м, А3=

Удлинения (укорочения) части стержня определяем по формуле ,где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, Е–модуль упругости материала.

Укорочение 1 участка .

Удлинение 2 участка

Удлинение 3 участка .

В правом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры смещения стержня необходимо строить, начиная с левого конца.

На третьем участке смещение изменяется от нуля до =7,87*10-4 м;

на втором участке: от =7,87*10-4м до

=16,17*10-4 м;

на первом участке: от 16,17*10-4 м

до 7,87*10-4 +8,3*10-4 -3,55*10-4=12,62*10-4 м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение стержня составило 12,62*10-4м.

Задача № 3 Расчет статически определимой стержневой системы,

Задача № 4 Расчет вала на прочность и жесткость.

Задание:Определить диаметры ступенчатого вала из условия прочности и жесткости на кручение. Определить угол закручивания вала.

Вал изготовлен из стали: [Θ] = 1,75 *10-2 рад/м, G = 8 *1010 Па

Схема вала приведена на рис. 4.

Исходные данные: а=1,4м; b=0,6м, c=0,6м, М1 =360Н*м; М2 = 400Н*м;

М3 = 400Н*м; М4 = 500Н*м; [t] = 55 Мпа.

Решение.

1. Определение внутренних крутящих моментов по участкам.

Для определения знака крутящего момента примем следующее правило: если смотреть на отсеченную часть бруса со стороны внешней нормали к сечению, то момент сечении будет положителен в том случае, когда сумма внешних скручивавших моментов поворачивает отсеченную часть бруса по часовой стрелке, и отрицателен при повороте части бруса в противоположном направлении.

Неизвестный момент М5 в заделке найдем из уравнения равновесия для всего вала. Условно примем направление момента М5 за отрицательное. Тогда уравнение равновесия принимает вид

-М1 +М2 +М3 -М4-М5 = 0

Из решения этого уравнения получим

М5 =-М1 +М2 +М3 -М4=-360+400+400-500= -60Н*м.

Для построения эпюры крутящих моментов применяем метод сечений к каждому участку вала в отдельности (следует заметить, что построение эпюры крутящих моментов совершенно аналогично построению эпюры продольных сил). Крутящие моменты в сечениях определяются как алгебраические суммы внешних моментов, приложенных по одну сторону от сечения.

Определим крутящие моменты на каждом участке, проведя последовательно

сечения на четырехучастках вала и рассмотрим равновесие соответствующих

оставшихся правых частей.

В сечении 1-1: .

В сечении 2-2: .

В сечении 3-3:

В сечении 4-4:

По полученным данным строим эпюру крутящих моментов, откладывая по вертикальной оси значения моментов. Отрицательные моменты откладываем вниз по осевой линии (рис. 4). Эпюру моментов строим в масштабе = .

2. По найденным значениям крутящих моментов из расчетов на прочность и жесткость в каждом сечении определим диаметры валов.

Расчет на прочность ведется по допускаемому напряжению при кручении

где –крутящий момент, действующий в сечении бруса;

–полярный момент сопротивления для круглого сечения, –диаметр вала. Из формулы выразим диаметр

По формуле определим диаметры для всех сечений.

Сечение 1-1: 0,0359м, принимаем d1=0,036м.

Сечение 2-2: 0,021м, принимаем d2=0,022м.

Сечение 3-3: 0,0303м, принимаем d1=0,032м.

Сечение 4-4: 0,0177м, принимаем d4=0,018м.

3. Расчет на жесткость ведется по допускаемому относительному углу закручиванию , где –полярный момент сопротивления круглого сечения.

В соответствии с формулой определим диаметр вала из условия жесткости

По формуле определим диаметры для всех участков.

Читайте также:  Сколько длиться лечение растяжения

Сечение 1-1: 0,0437м, принимаем d1=0,045м.

Сечение 2-2: 0,0292м, принимаем d2=0,03м.

Сечение 3-3: 0,0384м, принимаем d1=0,04м.

Сечение 4-4: 0,0257м, принимаем d4=0,026м.

4. В соответствии с расчетами на прочность и жесткость выбираем наибольшее значение диаметров для каждого участка. В результате получим следующие значения:

5. Абсолютные углы закручивания для каждого участка можно определить по формуле , где – длина участка.

Полярные моменты инерции для каждого сечения

Сечение 1-1: м4;

Сечение 2-2: м4.

Сечение 3-3: м4;

Сечение 4-4: м4.

Далее определим углы закручивания.

= -0,0218 рад – угол поворота сечения В относительно сечения А (или угол закручивания участка АВ).

= -0,0095 рад – угол поворота сечения С относительно сечения В (или угол закручивания участка ВС).

= 0,009 рад – угол поворота сечения D относительно сечения C (или угол закручивания участка CD).

=- 0,0233 рад – угол поворота сечения Е относительно сечения D (или угол закручивания участка DЕ).

Строим эпюру углов закручивания для всего вала (рис. 4). За начало координат выбран крайний левый конец бруса (сечение D). В пределах каждого из участков бруса эпюра линейна, поэтому достаточно знать углы поворота только для граничных сечений участков.

В сечении от Е до D полный угол закручивания вала равен

-0,0233 рад;

В сечении от Е до С полный угол закручивания вала равен

-0,0233+0,009=-0,0143 рад;

В сечении от Е до В полный угол закручивания вала равен

— 0,0233+0,009-0,0095=-0,0238 рад;

В сечении от Е до А полный угол закручивания вала равен

— 0,0233+0,009-0,0095-0,0218=-0,0456рад.

Ординаты этой эпюры дают значения углов поворота соответствующих поперечных сечений вала.

Эпюру углов поворота строим в масштабе

= .

Ответ: и полный угол закручивания -0,0456 рад.

Список литературы

1. Сопротивление материалов: учебное пособие для вузов/ Н.Н.Вассерман и др. — Пермь: Изд-ва ПНИПУ, 2011 – 364 с.

2. Прикладная механика: Учеб. Для вузов/ В.В.Джамай, Ю.Н.Дроздов, Е.А.Самойлов и др. – М. Дрофа, 2004. – 414 с.

3. Феодосьев В.И. Сопротивление материалов. М.: МГТУ им. Н.Э. Баумана, 1999 – 592 с.

Содержание

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.……………………………………………………………………3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость……………………………15
Задача № 5 Расчет балки на прочность при плоском изгибе…………………20
Задача №6 Расчет балки на прочность при плоском изгибе…………………23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы………………………………………………………………33

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.

Задание:Оценить прочность ступенчатого стержня из хрупкого материала. Определить его деформацию. Стержень изготовлен из чугуна: Е = 1,2*105 МПа; σвр= 113 МПа; σвсж= 490 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно (в данной задаче принимаем [n]= 1,2…1,8). Весом стержня пренебречь.

Схема стержня приведена на рис. 1.

Исходные данные: l1=0,5м; l2=0,2м; l3=0,4м; А=4*10-4м2; А1=А=

=4*10-4м2; А2=3А=12*10-4м2; А3=1,5А=6*10-4м2; F1=30кН; F2=60кН; F3=20кН.

Решение. Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил или местами изменения размеров поперечного сечения. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

Для того, чтобы определить усилие NI, проводим сечения в пределах первого участка. Рассмотрим равновесие оставшейся правой части стержня.

Из уравнения равновесия оставшейся правой части выразим внутреннюю продольную силу NIчерез внешние силы, приложенные к оставленной части

NI =- F1 = -30 кН

Так как положительное направление совпадает с деформацией растяжения, то знак минус означает, что на первом участке осуществляется деформация сжатия.

Аналогично находим внутреннее усилие NII, действующее на втором

участке. Для этого проводим произвольное сечение на втором участке и рассматриваем равновесие оставшейся правой части стержня .

Уравнение равновесия в проекции на ось стержня для второго участка

-F1 + F2 -NII = 0

Решая это уравнение, получим

NII = -F1 -F2 = -30+60 = 30 кН.

на втором участке осуществляется деформация растяжения.

Для того, чтобы определить внутреннее усилие NIII, действующее на третьем участке рассмотрим равновесие оставшейся части стержня.

-F1 +F2 + F3 – NIII = 0.

Решая это уравнение, получим

NIII =-F1 + F2 +F3 = -30+60 +20=50 кН.

Таким образом, в заделке действует реакция равная NIII =50 кН.

на третьем участке осуществляется деформация растяжения.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе =

Чтобы определить напряжение в поперечных сечениях бруса, нужно разделить числовые значения продольных сил на площади этих сечений.

Для первого участка

.

Допускаемые напряжения при сжатии, при условии, что коэффициент запаса n=1,2

=490/1,2=408 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на первом участке составил

*100%= = 81,7%, что выше допустимого (10%).

Для сечения 2-2: .

На втором участке деформация растяжения. Допускаемые напряжения при растяжении, при условии, что коэффициент запаса n=1,2

=113/1,2=94,2 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на втором участке составил

*100%= = 73,4%, что выше допустимого (10%).

Для сечения 3-3: .

На третьем участке деформация растяжения. Допускаемые напряжения при растяжении =94,2 Мпа.

Условие прочности для третьего участка выполняется .

Недогруз конструкции на третьем участке составил

*100%= =11,6 %, что выше допустимого (10%).

Эпюра нормальных напряжений по длине бруса показана на рис. 1.

Эпюры нормальных напряжений строим в масштабе:

= .

укорочение участков бруса определяются по формуле

,

где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, напряжение в сечении. Е–модуль упругости материала.

укорочение первого участка

.

удлинение второго участка

удлинение третьего участка

.

В левом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры деформации стержня необходимо строить, начиная с левого конца.

На третьем участке деформация изменяется от нуля до =27,78*10-5м;

на втором от =27,78*10-5м

до =31,95*10-5м;

на первом от 31,95*10-5м

до 27,78*10-5 +4,17*10-5-31,25*10-5=0,7*10-5м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение бруса составило 0,7*10-5м и прочность стержня по допускаемым напряжениям выполняется.



Источник