Построение графиков при растяжении

Построение графиков при растяжении thumbnail

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Стальной образец с образовавшейся "шейкой"

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Построение графиков при растяжении

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Построение графиков при растяжении

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Построение графиков при растяжении

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Построение графиков при растяжении

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Построение графиков при растяжении

Построение графиков при растяжении

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Построение графиков при растяжении

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

Читайте также:  Прочность бруса на растяжение

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Построение графиков при растяжении

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Построение графиков при растяжении

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Построение графиков при растяжении

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Построение графиков при растяжении

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Построение графиков при растяжении

Продолжение — в статье «Построение графиков функций».

Источник

Если Вы знаете, как выглядят графики простейших элементарных функций, или умеете быстро строить их по характерным точкам, то сумеете также быстро построить на их основе графики более сложных функций того же класса. Для этого существуют правила преобразования графиков функций. Они легко запоминаются, но если Вы всё же не уверены в результате, проверьте его по одной-двум хорошим точкам. Эти правила, разумеется, общие для всех функций, а не только для тех, которые изучают в школе, поэтому известный график дальше будем называть заданным.

Пусть задан график функции y = f(x). Чтобы построить график функции

  1. y = mf(x), где m > 0 и m ≠ 1, нужно ординаты точек заданного графика умножить на m. Такое преобразование называется растяжением от оси x c коэффициентом m, если m > 1, и сжатием к оси x, если 0 < m < 1.
  2. y = −f(x) получается из графика функции f(x) преобразованием симметрии относительно оси x. (Преобразование симметрии — зеркальное отражение относительно прямой.)
  3. y = f(x) + n, получается из графика функции f(x) параллельным переносом последнего вдоль оси ординат на n единиц вверх, если n > 0 и, соответственно на |n| единиц вниз, если n
  4. y = f(kx), где k > 0 и k ≠ 1. Искомый график функции получается из заданного сжатием с коэффициентом k к оси y (если 0 < k < 1 указанное «сжатие» фактически является растяжением с коэффициентом 1/k)
  5. y = f(−x) получается из графика функции f(x) преобразованием симметрии относительно оси y
  6. y = f(x + l) получается из графика функции f(x) параллельным переносом последнего на l единиц влево, если l > 0 и, соответственно на |l| единиц вправо, если m < 0.

Например, пусть задан график функции y = √x_.

Построение графиков при растяжении

Чтобы построить графики других функций, содержащих аргумент (x) под знаком квадратного корня, воспользуемся перечисленными выше правилами. Заданный график повторим во вновь начерченных осях «карандашом бледно», требуемый график, который получится после преобразований, сделаем более интенсивным. В тетради лишнее можно будет удалить ластиком, останется только результат выполнения задания.

Пример 1a. Построить график функции y = 2√x_

Построение графиков при растяжении

Растянули в 2 раза от оси x. Ордината каждой точки увеличилась в 2 раза.

Пример 1b. Построить график функции y = √x_ /2

Построение графиков при растяжении

Сжали вдвое к оси x. Ордината каждой точки уменьшилась в 2 раза.

Пример 3a. Построить график функции y = √x_ + 2

Построение графиков при растяжении

Параллельно перенесли на 2 единицы вверх вдоль оси y. Ордината каждой точки увеличилась на 2.

Пример 3b. Построить график функции y = √x_ − 2

Построение графиков при растяжении

Параллельно перенесли на 2 единицы вниз вдоль оси y. Ордината каждой точки уменьшилась на 2 единицы.

Пример 4a. Построить график функции y = √2x__

Построение графиков при растяжении

Сжали вдвое к оси y. Абсцисса каждой точки уменьшилась в 2 раза.

Пример 4b. Построить график функции y = √x/2___

Построение графиков при растяжении

Растянули в 2 раза от оси y. Абсцисса каждой точки увеличилась в 2 раза.

Пример 6a. Построить график функции y = √x + 2____

Построение графиков при растяжении

Параллельно перенесли на 2 единицы влево вдоль оси x. Абсцисса каждой точки уменьшилась на 2 единицы.

Пример 6b. Построить график функции y = √x − 2____

Построение графиков при растяжении

Параллельно перенесли на 2 единицы вправо вдоль оси x. Абсцисса каждой точки увеличилась на 2 единицы.

Пример 2. Построить график функции y = −√x_

Построение графиков при растяжении

Применили преобразование симметрии – зеркально отразили относительно оси x.

Пример 5. Построить график функции y = √−x__

Построение графиков при растяжении

Применили преобразование симметрии – зеркально отразили относительно оси y.

Заметим, что параллельный перенос графика относительно одной из осей в какую-либо сторону равносилен переносу этой оси относительно графика в противоположную сторону. Поэтому 3-е и 6-е правила можно объединить следующим образом: чтобы построить график функции
y = f(xm) + n
нужно выполнить параллельный перенос всей плоскости координат так, чтобы началом новой системы координат xy была точка O(m;n). Очевидно, что вместо того, чтобы дважды перерисовывать график, проще перечертить оси.

Пример 7.
Задан график функции y = √x_. Построить график функции y = √x + 3____ − 1.

В этом случае m = −3, n = −1. Если есть затруднения в определении знаков m и n, то записывайте формулу функции так, чтобы она совпадала с правилом

y = f(xm) + n;   y = √xm_____ + n;   y = √x − (−3)_______ + (−1)

Построение выполняем так. Чертим оси нужной системы координат. Находим точку с координатами (−3;−1). Проводим через неё «бледно карандашом» прямые параллельные основным осям. Это вспомогательная система координат. В этой (карандашной) системе координат строим график y = √x_. Относительно основной системы координат, он является графиком функции y = √x + 3____ − 1. Т.е., если карандаш удалить ластиком, то останется график, который требовалось построить.

Если нужно скомбинировать только параллельные переносы, чтобы построить график функции, то всё равно в каком порядке их выполнять, и всё равно, что переносить — оси или кривые. Но если нужно построить график сложной функции, используя и перенос, и растяжение-сжатие, и отражения, то следует тщательно соблюдать порядок выполнения операций.

Последовательность преобразований при построении графиков.

Пусть задан график функции y = f(x) и нужно построить график функции y = m·f(kx + l) + n, где k, l, m, n — числа.

  1. Записываем формулу функции в виде
    y = m·f(k·(x + l/k)), т.е. выносим за скобки коэффициент при х в аргументе функции.
  2. Производим сжатие с коэффициентом k вдоль оси Ох к оси Oy. (Если k Oy.)
  3. Если k Oy.
  4. Осуществляем параллельный перенос (сдвиг) полученного графика на l/k единиц влево или вправо (в зависимости от знака, для положительного числа влево).
  5. Производим растяжение с коэффициентом m от оси (вдоль оси Оy). (Если m Ox.)
  6. Если m Ox.
  7. Осуществляем параллельный перенос (сдвиг) полученного графика на n единиц вверх или вниз (в зависимости от знака, при n >0 вверх).

Пример 8.
Задан график функции y = √x_. Построить график функции y = −0,5√3x − 12______ + 2.

1. Записываем формулу функции в виде y = −0,5·√3·(x − 4)_______ + 2,
т.е. выносим за скобки коэффициент при х под знаком квадратного корня с учетом того, что 12/3 = 4.
2. Строим известный график функции. ——
3. Производим сжатие в 3 раза к оси Oy. ——

4. —   (преобразование симметрии относительно оси Oy не требуется, т.к. k = 3 > 0).

5. Сдвигаем полученный график на 4 единицы вправо. ——
6. Производим сжатие в 2 раза (растяжение с коэффициентом 0,5) к оси . ——
7. Симметрично отражаем график относительно оси Ox. ——
8. Сдвигаем последний на 2 единицы вверх. Получили требуемый график. ——

преобразование графика функции

Проверим результат по «удобным» точкам. Например, x1 = 4 и x2 = 16.
y1 = −0,5√3·4 − 12_____ + 2 = 2.
y2 = −0,5√3·16 − 12_____ + 2 = −1.
Точки с координатами (4;2) и (16;−1) действительно принадлежат последнему графику.

Источник

Функции и их графики — одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она… мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, — линейная функция и парабола — слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции — это все-таки арифметика. Преобразования выражений — это алгебра. А математика — наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики».

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

Понятие функции

Типы элементарных функций

Преобразования графиков функций

Производная функции

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

при

График функции — прямая с выколотой точкой

Построение графиков при растяжении

2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Построение графиков при растяжении

Выделение целой части — полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

Построение графиков при растяжении

4. Построим график функции

Главное — правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

Построение графиков при растяжении

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции

Область определения функции:

Нули функции: и

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Построение графиков при растяжении

Прямая x = 0 (ось Y) — вертикальная асимптота функции. Асимптота — прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.

Построение графиков при растяжении

6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки — 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты:

Если x стремится к бесконечности, то у стремится к 1. Значит, — горизонтальная асимптота.

Вот эскиз графика:

Построение графиков при растяжении

Еще один интересный прием — сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:

Построение графиков при растяжении

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции — положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При , значение {cos x} равно единице. Значение функции в этих точках будет равно

Построение графиков при растяжении

9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции — в точках, где то есть при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?

Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

Построение графиков при растяжении

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции — все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

если или

В точке производная меняет знак с «минуса» на «плюс», — точка минимума функции.

В точке производная меняет знак с «плюса» на «минус», — точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

Построение графиков при растяжении

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции: 

1. Область определения функции

2. Область значений функции

3. Четность — нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

Источник

Читайте также:  Препараты для лечения растяжения связок коленного сустава