Пластичность материала при растяжении
Основные характеристики пластичности при испытании на растяжение – относительное удлинение после разрыва δ и относительное сужение ψ.
δ = . 100% (2.16)
ψ =. 100% (2.17)
где l0 — исходная расчетная длина образца,
lk — конечная длина после разрушения образца,
F0 , Fk – первоначальная и конечная площадь сечения образца.
Относительное удлинение можно рассчитывать по первичной диаграмме растяжения. Определив абсолютное удлинение Δl к моменту разрушения в точке k (см. рис. 2.45) и зная начальную расчетную длину l0, получим величину δ . Но при записи диаграммы без применения тензометров фиксируется удлинение не только расчетной части, а всего образца вместе с головками. Это делает расчет δ по диаграмме растяжения менее точным, чем по результатам измерения конечной расчетной длины lk разорванного образца.
Если разрушение происходит в средней трети расчетной длины образца, то lk определяют как расстояние между границами расчетной длины после плотного составления двух половин разрушенного образца. Когда эти половины нельзя составить плотно, без заметного зазора, следует определять lk как сумму расстояний от границ расчетной длины до края излома каждой части разорванного образца.
Методика несколько усложняется, если разрыв происходит вблизи головок – в одной из крайних третей расчетной части образца. Дело в том, что распределение удлинения в пределах расчетной длины неравномерно (рис. 2.51). Вблизи шейки, где локализуется пластическая деформация, удлинение, естественно, больше, чем вдали от нее, где оно не превышает величины равномерного удлинения Δlb .
Если образец разрывается вблизи головки, то измерение расстояния между границами расчетной длины даст явно заниженную величину lk по сравнению с той, которую бы мы получили при аналогичном разрыве образца на две примерно равные половины.
Схема на рис. 2.51 позволяет сделать несколько важных выводов. Ширина зоны сосредоточенной деформации cd обычно не превышает двух диаметров d0 образца. Значения cd и Δlk примерно постоянны для данного материала при одинаковой F0 и не зависят от l0 . Поэтому чем больше l0 , тем меньше влияние сосредоточенной деформации на суммарное относительное удлинение после разрыва, т.е. чем короче образец, тем большая доля длины приходится на сильную сосредоточенную деформацию и тем больше измеряемая после испытания величина δ. При использовании стандартных образцов с пяти- и десятикратным отношением l0/d0 вклад сосредоточенной деформации в общее относительное удлинение (обозначается δ5, δ10) для большинства металлов и сплавов сравнительно невелик. Поэтому для них величина δ характеризует в основном способность к равномерной деформации ,а не предельную пластичность материала. В некоторых случаях целесообразно отдельно определять равномерное и сосредоточенное относительное удлинение.
Для характеристики предельной способности материала к пластическому растяжению до разрыва более правильно использовать относительное сужение ψ, также определяемое суммой равномерного и сосредоточенного сужения. Но здесь вклад равномерной деформации в суммарное относительное сужение обычно невелик. Величина равномерного относительного сужения ψр=(F0 – Fb)/F0 пластичных материалов (за исключением случаев сверхпластичной деформации) не превышает 10-15%, в то время как ψ достигает 70-99%. Общее ψ является, таким образом, характеристикой в основном сосредоточенной деформации, если в образце перед разрушением образуется шейка.
Для экспериментального определения относительного сужения после разрыва образца достаточно измерить его минимальный диаметр в месте разрыва. Величину ψ определяют обычно при испытании цилиндрических образцов. Образование шейки при растяжении плоских образцов сопровождается усложнением формы поперечного сечения, площадь которого и соответственно величину ψ точно установить довольно трудно.
Характеристики пластичности часто связаны с прочностными свойствами. При достаточно высоких значениях относительного удлинения и сужения после разрыва (>10-20%) прочность обычно тем меньше, чем выше пластичность. Но переход к хрупкому разрушению сопровождается, как правило, снижением прочностных свойств.
В зависимости от величины удлинения меняется разница между пределами текучести и прочности. Отношение σ0,2(σтн)/ σв является важной характеристикой материала. Обычно оно тем меньше, чем выше пластичность. Например, у высокопластичных (δ=15÷35%) отожженных алюминиевых сплавов σ0,2/ σв=0,38÷0,45, а у искусственно состаренных 0,77-0,96 (при δ<5%).
Источник
δ — максимальное удлинение в момент разрыва
где Δlmax~ максимальное остаточное удлинение (рис. 22.3); ψ— максимальное сужение при разрыве
где Аш — площадь образца в месте разрыва.
Характеристики пластичности определяют способность материала к деформированию, чем выше значения δ и ψ, тем материал пластичнее
Различные материалы по-разному ведут себя под нагрузкой, характер деформаций и разрушения зависит от типа материалов.
Принято делить материалы по типу их диаграмм растяжения на три группы. К первой группе относят пластичные материалы, эти материалы имеют на диаграмме растяжения площадку текучести (диаграммы первого типа) (рис. 22.5а). Ко второй группе относятся хрупкие материалы, эти материалы мало деформируются, разрушаются по хрупкому типу. На диаграмме нет площадки текучести (рис. 22.55).
К третьей группе относят материалы, не имеющие площадку текучести, но значительно деформирующиеся под нагрузкой, их называют пластично-хрупкими (рис. 22.5е).
Таким образом, хрупкий и пластично-хрупкий материалы не имеют площадки текучести, а в справочниках отсутствует характеристика «предел текучести». По этой особенности их можно узнать.
Пластично-хрупкие материалы значительно деформируются, этого нельзя допустить в работающей конструкции. Поэтому их деформацию обычно ограничивают. Максимально возможная относительная деформация ε = 0,2%.
По величине максимально возможной деформации определяется соответствующее нормальное напряжение σ0,2, которое принимают за предельное.
Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).
Для пластичных материалов предельным напряжением считают предел текучести, т.к. возникающие пластические деформации не исчезают после снятия нагрузки:
Для хрупких материалов, где пластические деформации отсутствуют, а разрушение возникает по хрупкому типу (шейки не образуется), за предельное напряжение принимают предел прочности:
Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (сто,2):
Допускаемое напряжение — максимальное напряжение, при котором материал должен нормально работать.
Допускаемые напряжения получают по предельным с учетом запаса прочности:
где [σ] — допускаемое напряжение;s — коэффициент запаса прочности; [s] — допускаемый коэффициент запаса прочности.
Примечание. В квадратных скобках принято обозначать допускаемое значение величины.
Допускаемый коэффициент запаса прочности зависит от качества материала, условий работы детали, назначения детали, точности обработки и расчета и т. д.
Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в условиях ударов и вибраций.
Особенности поведения материалов при испытаниях на сжатие:
1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяжении и сжатии одинаковы.
2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σвр< σвс.
Если допускаемое напряжение при растяжении и сжатии различно, их обозначают [σр] (растяжение), [σс] (сжатие).
Расчеты на прочность ведутся по условиям прочности — неравенствам, выполнение которых гарантирует прочность детали при данных условиях.
Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:
Расчетное напряжение а зависит от нагрузки и размеров поперечного сечения, допускаемое только от материала детали и условий работы.
Существуют три вида расчета на прочность.
1. Проектировочный расчет — задана расчетная схема и нагрузки; материал или размеры детали подбираются:
— определение размеров поперечного сечения:
— подбор материала
по величине σпред можно подобрать марку материала.
2. Проверочный расчет — известны нагрузки, материал, размеры детали; необходимо проверить, обеспечена ли прочность.
Проверяется неравенство
3. Определение нагрузочной способности (максимальной нагрузки):
Задание:
1. Определить величину продольных сил и нормальных напряжений на нагруженных участках бруса.
2. Определить относительное удлинение бруса.
3. Определить поперечное сечение бруса из условия прочностиσт = 570 МПа, σв = 720 МПа, [s] = 1,5.
4. Схему выбрать в соответствии с номером студента по списку в журнале.
№ варианта | Силы, кН | Длины участков, м | Площадь | ||||||
F1 | F2 | F3 | a | b | c | ||||
0,5 | 0,6 | 0,7 | |||||||
0,6 | 0,7 | 0,8 | |||||||
0,7 | 0,8 | 1,0 | |||||||
0,8 | 1,0 | 1,2 | |||||||
0,9 | 1,0 | 1,3 | |||||||
1,0 | 1,2 | 1,4 | |||||||
1,2 | 1,3 | 1,5 | |||||||
1,3 | 1,5 | 1,9 | |||||||
1,4 | 1,7 | 2,2 | |||||||
1,5 | 1,9 | 2,3 | |||||||
0,6 | 0,8 | 0,9 | |||||||
0,7 | 0,9 | 1,1 | |||||||
0,8 | 1,0 | 1,2 | |||||||
0,9 | 1,2 | 1,4 | |||||||
1,0 | 1,3 | 1,6 | |||||||
1,1 | 1,3 | 1,7 | |||||||
1,2 | 1,3 | 1,8 | |||||||
1,3 | 1,6 | 2,0 | |||||||
1,4 | 1,7 | 2,2 | |||||||
1,5 | 1,8 | 2,3 | |||||||
1,6 | 2,0 | 2,5 | |||||||
1,5 | 1,9 | 2,4 | |||||||
1,4 | 1,8 | 2,1 | |||||||
1,3 | 1,6 | 2,0 | |||||||
1,2 | 1,4 | 1,7 |
Пример 1: Ступенчатый брус нагружен вдоль оси двумя силами. Брус защемлен с левой стороны (рис. 20.6). Пренебрегая весом бруса, построить эпюры продольных сил и нормальных напряжений.
Решение
1.пределяем участки нагружения, их два.
2.Определяем продольную силу в сечениях 1 и 2.
3.Сстроим эпюру.
4.Рассчитываем величины нормальных напряжений и строим эпюру нормальных напряжений в собственном произвольном масштабе.
5.Определяем продольные силы.
В обоих сечениях продольные силы положительны.
Определяем нормальные напряжения
Сопоставляя участки нагружения с границами изменения площади, видим, что образуется 4 участка напряжений.
Нормальные напряжения в сечениях по участкам:
Откладываем значения напряжений вверх от оси, т. к. значения их положительные (растяжение). Масштаб эпюр продольной силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр и имеющегося на листе места.
Пример 2:Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормальных напряжений по его длине, а также определить перемещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/’мм3.
Решение
1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.
2. Вычислим напряжения в поперечных сечениях каждого участка:
для первого
для второго
для третьего
для четвертого
для пятого
Эпюра нормальных напряжений построена на рис. 2.9, в.
3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса определяется как алгебраическая сумма удлинений (укорочений) всех его участков:
Подставляя числовые значения, получаем
4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (укорочений) участков ///, IV, V:
Подставляя значения из предыдущего расчета, получаем
Таким образом, свободный правый конец бруса перемещается вправо, а сечение, где приложена сила Р2, — влево.
Пример 3: .Прямой брус растянут силой 150 кН (рис. 22.6), материал — сталь σт = 570 МПа, σв = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.
Решение
1. Условие прочности:
2. Потребная площадь поперечного сечения определяется соотношением
3. Допускаемое напряжение для материала рассчитывается из заданных механических характеристик. Наличие предела текучести означает, что материал — пластичный.
4. Определяем величину потребной площади поперечного сечения бруса и подбираем размеры для двух случаев.
Сечение — круг, определяем диаметр.
Полученную величину округляем в большую сторонуd = 25 мм, А = 4,91 см2.
Сечение — равнополочный уголок № 5 по ГОСТ 8509-86.
Ближайшая площадь поперечного сечения уголка — А = 4,29 см2 (d = 5 мм). 4,91 > 4,29
Порядок выполнения:
1. Начертить схему в соответствии с вариантом задания
2. Разбить брус на участки.
3. Определить значения продольных сил и построить эпюру
4. Определить значения нормальных напряжений и построить эпюру.
5. Определить значения абсолютного удлинения
6. Определить диаметр круглого бруса
7. Определить номер стандартного профиля по вариантам
8. Ответить на контрольные вопросы.
9. Ввод.
Содержание отчета:
1. Схема в соответствии с вариантом
2. Решение
3. Ответы на контрольные вопросы
4. Вывод
Контрольные вопросы:
1. Какие внутренние силовые факторы возникают в сечении бруса при растяжении и сжатии?
2. Как распределены напряжения по сечению при растяжении и сжатии?
3. Как назначаются знаки продольной силы и нормального напряжения?
4. Что показывает эпюра продольной силы?
5. Как изменится величина напряжения если площадь поперечного сечения возрастет в 4 раза?
6. В каких единицах измеряется напряжение?
7. Какое явление называют текучестью?
8. Что такое «шейка», в какой точке диаграммы растяжения она образуется?
9. Почему полученные при испытаниях механические характеристики носят условный характер?
10. Перечислите характеристики прочности.
11. Перечислите характеристики пластичности.
12. В чем разница между диаграммой растяжения, вычерченной автоматически, и приведенной диаграммой растяжения?
13. Какая из механических характеристик выбирается в качестве предельного напряжения для пластичных и хрупких материалов?
14. В чем различие между предельным и допускаемым напряжениями?
15. Запишите условие прочности при растяжении и сжатии. Отличаются ли условия прочности при расчете на растяжение и расчете на сжатие?
Практическая работа № 5
Тема: «Расчеты на срез и смятие»
Цель работы: овладение студентами навыками проектировочного расчёта на срез и смятие заклёпочного соединения.
Теоретическая часть:
Сдвиг – вид деформации, при котором в поперечных сечениях стержня возникает только поперечная сила Q, а остальные внутренние силовые факторы равны нулю.
Заклёпочные соединения относятся к неразъёмным соединениям, так как для их разборки необходимо разрушить соединительные элементы – заклёпки.
Срез –разрушение соединения в результате перерезывания заклёпок по плоскости соприкосновения деталей.
Односрезными называются соединения, у которых при разрушении заклёпок срез каждой из них происходит по одному поперечному сечению.
Двухсрезныминазываются соединения, у которых при разрушении заклёпок срез каждой из них происходит по двум поперечным сечениям.
Смятие– местное деформирование деталей в зоне их контакта.
Практические расчёты на срез и смятие базируются на следующих допущениях:
1. Предполагается, что в поперечных сечениях стержня возникает только один внутренний силовой фактор — поперечная силаQ;
2. Предполагается, что касательные напряжения, возникающие в поперечном сечении,распределены по его площади равномерно.
3. Предполагается, что если соединение осуществлено несколькими одинаковыми деталями (заклёпками), то все они нагружены одинаково.
Условие прочности на срез: τср = Q/Аср ≤ [τср],
где τср–расчетное напряжение среза, возникающее в поперечном сечении детали (заклёпки);
Q – поперечная сила;
Аср–площадь среза одной заклёпки;
[τср]–допускаемое напряжение на срез.
При нескольких одинаковых соединительных деталях Q = F/i ,
где F–сила, общая нагрузка соединения;
i – число заклёпок.
Условие прочности на смятие: σсм = F/(iАсм)≤ [σсм],
где σсм –расчётное напряжение смятия;
F– сила, общая нагрузка соединения;
i – число заклёпок;
Асм– расчётная площадь смятия;
[σсм]– допускаемое напряжение на смятие.
Условие прочности при растяжении (сжатии)σmax=F/А≤[σ],
где σmax – максимальные напряжения, возникающие в листах;
F – сила, общая нагрузка соединения;
А–площадь сечения листа;
[σ] – допускаемое напряжение на растяжение;
(для стали [σ]=160 МПа);
Пример выполнения практической работы
t, мм | t1, мм | d, мм | F, кН | [τср], МПа | [σсм], МПа |
По условия прочности на срез количество заклёпок должно быть
i ≥ F / (k∙Аср∙[τср]) ,
где k=2, так как заклёпки двухсрезные.
Аср= πd2/4=π·(0,02)2/4 = 3,14·10-4 м2.
Тогда i ≥240·103 / 2·3,14·10-4 ·140·106 = 2,73 Принимаем i = 3.
1. По условию прочности на смятие количество заклёпок должно быть
i ≥ F /(Асм ∙[σсм]) ,
где Асм = t·d = 0,012· 0,02 = 2,4·10-4 м2 .
Примечание. В данном случае t<2t1. При t>2t1Асм = 2t1·d .
Тогда i ≥ 240·103 / 2,4·10-4 ·280·106 = 3,57 Принимаем i = 4.
Таким образом, с каждой стороны стыка следует расставить по 4 заклёпки.
2. Для размещения заклёпок в плане надо определить необходимую ширину листов. Из условия прочности на растяжениерабочая площадь сечения листа должна быть
Приняв шаг а = 3d = 60 мм и расстояние от осей заклёпочных отверстий до краёв листов и накладок по с = 2,5d = 50 мм, размещаем заклепки как показано на рис.2.
ширина листа
b = 2.5·2d=100 мм
длина листа
B = (2,5·2+3·3)d=280 мм, При длине В ≥120 мм число заклёпок в поперечном ряду должно быть не менее двух. Тогда сечение будет ослаблено двумя отверстиями и полную ширину листов следует принять
t = (100-4·20)·8 =160 мм2=160·10-6 м2
[σ]=F/A=240·103 /160·10-6=150·106 МПа
[σ] = F/А [σ] =240·103 / 150∙106 = 1,6·10-3 м2.≤ [σр]
Задание:
Определить необходимое количество заклёпок заданного диаметра d и разместить их в плане.
F
Рис. 1
Стык двух листов толщиной t,перекрытый двумя накладками толщиною t1каждая, растягивается силами F (Рис. 1).
№ | t, мм | t1, мм | d, мм | F, кН | [τср], МПа | [σсм], МПа | [σр], МПа |
Порядок выполнения:
1. Рассчитать количество заклёпок из условия прочности на срез
2. Рассчитать количество заклёпок из условия прочности на смятие
3. Определить необходимую ширину и длину листов для размещения заклёпок в плане.
4. Выполнить чертеж.
5. Ответить на контрольные вопросы.
6. Вывод.
Содержание отчета:
9. Решение
10. Чертеж размещения заклепок в масштабе
11. Ответы на контрольные вопросы
12. Вывод.
Контрольные вопросы:
1. Какие напряжения возникают при сдвиге (срезе) и смятии?
2. Какая часть детали испытывает деформацию сдвига (среза), смятия?
а)
б)
F
Рис. 3
3. Напряжения при сдвиге (срезе) определяются по формуле
4. а) σ=N/A б) τ=Q/A в) τ=М/Wp г) σ=M/W
5. Определить диаметр штифта d из условия прочности на срез если:
F=2 кН, [τср] = 100 МПа.
F F
Рис. 4
6. Закон Гука при сдвиге (срезе) устанавливает зависимость между:
а) напряжением и силой; б) напряжением и площадь;
в) напряжением и деформацией; г) напряжением и массой;
7. Какой физический смысл имеет модуль сдвига?
8. Укажите единицу измерения модуля упругости второго рода
а) Па б) Вт в) безразмерная г) Дж
Практическая работа № 6
Тема: расчеты на прочность и жесткость при кручении
Цель: Научиться строить эпюры крутящих моментов и производить расчеты на прочность при кручении
Теоретическая часть:
Кручение круглого бруса происходит при нагружении его парами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ, называемый углом сдвига (угол поворота образующей). Поперечные сечения разворачиваются на уголip, называемый углом закручивания (угол поворота сечения, рис. 26.1).
Длина бруса и размеры поперечного сечения при кручении не изменяются.
Связь между угловыми деформациями определяется соотношением
l — длина бруса;R — радиус сечения.
Длина бруса значительно больше радиуса сечения, следовательно,
φ>> γ.
Угловые деформации при кручении рассчитываются в радианах.
Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси.
2. Радиус, проведенный из центра поперечного сечения бруса, после деформации остается прямой линией (не искривляется).
3. Расстояние между поперечными сечениями после деформации не меняется. Ось бруса не искривляется, диаметры поперечных сечений не меняются.
Дата добавления: 2016-10-30; просмотров: 3243 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Источник