1 центральное растяжение бруса

1 центральное растяжение бруса thumbnail

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

2014-09-01 21-40-08 Скриншот экрана

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

2014-09-01 21-43-41 Скриншот экрана

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.
Читайте также:  Растяжение мышцы лечение народными средствами

Источник

Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние силовые фак­торы равны нулю.

Явление центрального растяжения (сжатия) возника­ет только тогда, когда все внешние нагрузки действуют, по оси, проходящей через центры тяжести поперечных сечений бруса. Например, центральное растяжение испы­тывает трос башенного крана от веса поднимаемого гру­за. Условимся внутреннюю силу N считать положитель­ной, если она направлена от сечения (соответствует рас­тяжению), и отрицательной, если она направлена к сечению (соответствует сжатию).

В тех случаях, когда направление силы N неизвестно, следует ее принимать всегда положительной, т. е. растя­гивающей. Если после решения уравнения сила N полу­чится со знаком плюс, то брус в данном сечении будет растянут, если же со знаком минус, то сжат.

рис.4.10

Расчет начинается со свободного конца бруса, чтобы не определять величины реакций в опорах.

Рассмотрим прямой брус (рис. 4.10, а) постоянного и симметричного поперечного сечения, жестко закреплен­ный вверху и нагруженный тремя внешними сосредото­ченными силами F1 = 10 кН, F2 = 20 кН, F2=30 кН, приложенными в точках В, С, D и направленными вдоль его продольной оси. Естественно, что на разных участках длины бруса будут возникать разные по величине вну­тренние продольные силы. В данной задаче таких участ­ков будет три: участок ВС, участок CD и участок DK.

Для нахождения внутренних продольных сил N вос­пользуемся методом сечений, т. е. мысленно рассечем брус плоскостью, перпендикулярной к его оси, на две ча­сти.

Поскольку к брусу приложены три внешние силы, то необходимо рассечь брус в трех местах, т. е. в пределах всех трех участков ВС, CD и DK, отбросить одну из час­тей и ее влияние на оставленную часть заменить неизве­стной пока внутренней силой N. Из условия равновесия =0 для оставленной части найти ее величину и направление. Приступим к решению нашей задачи.

Сечение 11. Рассекаем брус сечением 11 на две части, отбрасываем одну из них, например, верхнюю. Для упрощения расчета следует отбрасывать ту часть, на которую действует большее число внешних сил. В данном случае на верхнюю часть действуют три силы, поэтому целесообразнее ее отбросить, а оставить ниж­нюю часть, на которую действует только одна сила F1. Заменяем действие отброшенной части неизвестной про­дольной силой N1предполагая последнюю растягиваю­щей, получим схему (рис. 4.10,б).

Составляем условия равновесия для оставленной ча­сти бруса: , откуда ==10 кН. Отсюда видно, что сила N1постоянна на всем протяжении уча­стка ВС, так как независимая переменная zне вошла в уравнение равновесия.

Сечение 22. Для определения продольной силы N2 в произвольном сечении 22 поступаем совершенно ана­логично предыдущему (рис. 4.10,в). Составляем урав­нение равновесия: , N2=30 кН.

Сечение 33. Для определения продольной силы ЛГ3 в сечении 33 рациональнее было бы оставить верхнюю часть, но при этом надо было предварительно определить реакцию RKв жесткой опоре. Так как мы ее не находи­ли, оставим нижнюю часть (рис. 4.10, г), для которой уравнение равновесия запишется в виде , откуда N3 = 60 кН.

Для наглядного представления характера (закона) изменения какого-либо из внутренних силовых факторов длине бруса строят график изменения этого фактора, в котором абсцисса соответствует местоположению сече­ния на оси, а ордината показывает значение исследуе­мого фактора в данном сечении. Такой график называ­ется эпюрой. Перейдем к построению эпюры продольных сил для заданного бруса. В данном случае брус содер­жит три участка, поэтому для построения эпюры N необ­ходимо провести исследование изменения продольной силы на каждом участке отдельно.

Читайте также:  Что нужно делать при растяжении мышц к детей

На участке ВС из уравнения равновесия мы опреде­лили величину N1 = 10 кН и установили, что ее значе­ние в пределах этого участка не меняется, т. е. всюду остается постоянной N1 = 10 кН, где бы мы ни прово­дили сечение 11. Следовательно, график продольной силы N1 на первом участке будет постоянным.

На участке DC закон изменения продольной силы N2 тоже будет постоянным в силу того, что переменная z не входила в уравнение равновесия. График на этом уча­стке отличается от графика на первом участке только величиной, так как N2 = 30 кН.

На участке DK закон изменения продольной силы N3также будет постоянным (N3=60 кН).

Эпюрой силы называется график распределения продольной силы вдоль оси бруса.

Ось эпюры параллельна продольной оси. Нулевая линия проводится тонкой линией. Значения сил откладывают от оси, положительные —вверх, отрицательные —вниз.

В пределах одного участка значение силы не меняется, поэто­му эпюра очерчивается отрезками прямых линий, параллельными оси Oz.

Правило контроля: в месте приложения внешней силы на эпюре должен быть скачок на величину приложенной силы.

На эпюре проставляются значения Nz. Величины продольных сил откладывают в заранее выбранном масштабе.

Эпюра по контуру обводится толстой линией и заштриховыва­ется поперек оси.

Изучая деформации при растяжении и сжатии, обнаруживаем, что выполняются гипотеза плоских сечений и принцип смягчения граничных условий.

Гипотеза плоских сечений заключается в том, что поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси.

Следовательно, продольные внутренние волокна удлиняются одинаково, а внутренние силы упругости распределены по сечению равномерно.

Принцип смягчения граничных условий гласит: в точках тела, удаленных от мест приложения нагрузки, модуль внутренних сил мало зависит от способа закрепления. Поэтому при решении задач не уточняют способ закрепления.

Источник

Центральным растяжением (или центральным сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая или сжимающая), а все остальные внутренние усилия равны нулю. Иногда центральное растяжение (или центральное сжатие) кратко называют растяжением (или сжатием) .

Правило знаков
Растягивающие продольные усилия принято считать положительными, а сжимающие — отрицательными.

Рассмотрим прямолинейный брус (стержень), нагруженный силой F

Растяжение стержня

Определим внутренние усилия в поперечных сечениях стержня методом сечения.

Напряжение — это внутренне усилие N, приходящее на единицу площади A. Формула для нормальных напряжений σ при растяжении
$$sigma = frac{N}{A} $$

Так как поперечная сила при центральном растяжении-сжатии равна нулю, то и касательное напряжение [math]tau=0[/math].

Условие прочности при растяжении-сжатии
$$ max; sigma = {Biggvertfrac{N}{A}Biggvert} leq [sigma] $$

Дифференциальная зависимость внутренних усилий от распределенной нагрузки:

dN =q·dx

Определение внутренних усилий и напряжений

Рассмотрим вариант определения внутренних сил под действием произвольных сосредоточенных и распределенных сил, направленных вдоль стержня.

Продольное усилие N равняется сумме сил (сосредоточенных Fi и распределенных qi), расположенных по одну сторону от рассматриваемого сечения.

Общая формула для определения продольного усилия в произвольном сечении
$$N(x)=sum F _i + sum int q _i(x)cdot dx $$

Примем, что распределенная нагрузка постоянная. Тогда можно записать
$$N(x)=sum F _i + sum t q _i(x)cdot(x-L _{q _{i}н}) – sum t q _i(x)cdot(x-L _{q _{i}k}),$$
где Lqiн и Lqiк – расстояние от начала координат до начала и конца распределенной силы qi

Для эпюр продольных сил характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

  • Эпюры N всегда прямолинейные.
  • На участке, где нет распределенной нагрузки, эпюра N — прямая, параллельная оси; а на участке под распределенной нагрузкой — наклонная прямая.
  • Под точкой приложения внешней сосредоточенной силы на эпюре обязательно должен быть скачок (разрыв первого рода) на величину этой силы.

Правильность построения эпюры обеспечивается также надлежащим выбором так называемых характерных сечений, то есть тех сечений, в которых величина внутренней силы обязательно должна быть определена. К характерным сечениям относятся:

  • сечения, расположенные бесконечно близко по обе стороны от точек приложения сосредоточенных сил и моментов;
  • сечения, расположенные в начале и в конце каждого участка с распределенной нагрузкой;
  • сечения, расположенные бесконечно близко к опорам, а также на свободных концах.

Пример определения продольных усилий

Пусть стержень длиной L=15 нагружен двумя сосредоточенными растягивающими силами F1=7 в точке FL1=14 и F2=2 в точке FL2=6. Стержень загружен сжимающей распределенной силой q=-1.2, приложенной от начала стержня до Lq1=12. Нужно построить эпюру продольных усилий.

Читайте также:  Долго болит растяжение голеностопа

Для определения усилий воспользуемся пакетом SciLab ( см. также здесь).

Создадим две маленькие функции и запишем их в файл n_calc.sce

function [N]=Nx_calc(x,q,F)
// определение суммы всех сил справа от сечения x
Fsum=0;
r=size(F,’r’);
for i=1:r
Fsum=Fsum+F(i,2)*(x<F(i,1));
end;
q_sum=0;
r=size(q,’r’);
for i=1:r
q_sum=q_sum+q(i,3)*(x-q(i,1))*(x<q(i,1))-q(i,3)*(x-q(i,2))*(x<q(i,2));
end;
N=Fsum+q_sum;
endfunction
//—-
function [x,y]=N_calc(q,F,L,step)
// формирования таблицы усилий в стержне с шагом step
x=[0:step:L,F(:,1)’] // знак ‘ — транспонирование матрицы
x=gsort(x,’g’,’i’);
y=[];
for i=1:length(x)
y(i)=Nx_calc(x(i),q,F);
end
endfunction

Задаем начальные условия и строим эпюру продольных сил

// подключение нашей функции
exec(‘n_calc.sce’)
// распределенная нагрузка [начало,конец, интенсивность нагрузки]
q=[0, 12, -1.2];
// сосредоточенная нагрузка [точка приложения, значение силы]
F=[14, 4; 6, 2];
// Длина
L=15;
// шаг задаем очень маленьким
step=0.1;
// вычисление
[x,y]=N_calc(q,F,L,step);
// построение эпюры
plot2d(x,y)
plot2d3(x,y)
xgrid(3);

С помощью функции Nx_calc можно определить усилие N в любом сечении x.

Так как Scilab, GNU Octave и MATLAB имеют очень близкие языки, то для решения этой задачи в этих пакетах можно воспользоваться выше приведенным алгоритмом.

2й вариант

Приведем еще один вариант определения продольных усилий при центральном растяжении-сжатии с помощью языка программирования R.

# Центральное растяжение-сжатие
#
# определение суммы всех сил справа от сечения Xi
Nx_calc <- function (Xi,q,aF) {
Nsum <- function(Fx, x) {N<-Fx[2]*(x<=Fx[1]);}
Fsum<-sum(apply(aF,1, Nsum, x=Xi));
q_sum <- function(qx,x) {N<-qx[3]*(x-qx[1])*(x<=qx[1])-qx[3]*(x-qx[2])*(x<=qx[2]); }
qsum<-sum(apply(q,1, q_sum, x=Xi));
N<-Fsum+qsum;
}
 
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры
N_calc <- function (q,F,L,step) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(qi);
 
x<- c(seq(from=0, to=L, by=step),Fi[,1]);
 
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»h»,ylab=»Усилие», col=»blue»,main=»Эпюра усилий N»);
lines(x,y);
abline(h=0);
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
}
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры (Усовершенствованный вариант №2)
N_calc2 <- function (q,F,L) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(‘Сосредоточенные силы Fi’);print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(‘Распределенные нагрузки’);print(qi);
 
z<-Fi[,1];
x1<-numeric();
eps=L/1000; # малая величина
for ( i in 1:length(z) ) {
x1<-c(x1,z[i]-eps,z[i],z[i]+eps)
}
x<- c(0,L,qi[,1],qi[,2],x1);
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»l»,ylab=»Усилие», main=»Эпюра усилий N», sub=’вариант №2′ );
abline(h=0);
polygon(c(x,L,0),c(y,0,0),col=’gray’)
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
# Определяем максимальное сжимающее и растягивающее усилие
y_max<-max(y);
y_min<-min(y);
if ( y_max > 0 ) {
x_max= x[which.max(y)];
print(sprintf(«Максимальное растягивающее значение N=%f при x=%f»,y_max,x_max ) );
points(x_max,y_max, col=»red»);
text(x_max,y_max,y_max,col=’blue’,pos=4);
}
if ( y_min < 0 ) {
x_min= x[which.min(y)];
print(sprintf(«Максимальное сжимающее значение N=%f при x=%f»,y_min,x[which.min(y)] ) );
points(x_min,y_min, col=»red»);
text(x_min,y_min,y_min,col=’blue’,adj=1,pos=4);
}
}

Исходный код функций

Ниже приведен сеанс построения эпюры N в R

> source(«N_calc.r», echo=TRUE);
 
> # Центральное растяжение-сжатие
> #
> # определение суммы всех сил справа от сечения Xi
> Nx_calc <- function (Xi,q,aF) {
+ Nsum <- function(Fx, …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры
> #
> N_calc <- function (q,F,L,step) {
+ #превращаем вектор в матри …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры (Усовершенствованный вариант №2)
> N_calc2 <- function (q,F,L) {
+ # …. [TRUNCATED]
>
> L=15; # Длина
> step=0.1; # шаг задаем очень маленьким
> # распределенная нагрузка [начало,конец, интенсивность нагрузки]
> q<-c(0, 12, -1.2);
> # сосредоточенная нагрузка. Порядок заполнения [точка приложения, значение силы] …
> F=c(14, 4, 6, 2);
> N_calc2(q,F,L)
[1] «Сосредоточенные силы Fi»
x F
[1,] 14 4
[2,] 6 2
[1] «Распределенные нагрузки»
Ln Lk q
[1,] 0 12 -1.2
[1] «Максимальное растягивающее значение N=4.000000 при x=12.000000»
[1] «Максимальное сжимающее значение N=-8.400000 при x=0.000000»
>

В результате на экране отобразится следующая эпюра:
Здесь сразу определены опасные сечения.
Так же, как и в предыдущем варианте, с помощью функции Nx_calc можно определить усилие N в любом сечении x.

Дополнительно

Пример из пособия МИИТ Эпюра продольных сил при центральном растяжении-сжатии (формат pdf).

Связанные статьи

  • Найти внутренние усилия и построить их эпюры для стержня
  • Закон Гука

метки: scilab,
внутренние усилия,
определение усилий: примеры,
растяжение-сжатие,
язык r

Источник