Перемещение при осевом растяжении

Перемещение при осевом растяжении thumbnail

При центральном растяжении и сжатии прямого стержня поперечные сечения, оставаясь плоскими, получают осевые перемещения и (см. рис. 3.7). Они считаются положительными, если их направление совпадает с положительным направлением оси Ох.

Рассмотрим осевые перемещения двух произвольных сечений, отстоящих на расстоянии Ах друг от друга (рис. 3.11). После приложения нагрузки эти сечения получают перемещения соответственно ии и + А и. Длина отрезка Ах после деформации составляет Ах1 = Ах + + А и) — и = Ах + А и, а величина удлинения равна Ах, — Ах = Аи.

Рис. З.п

Относительная продольная деформация волокон стержня в сечении х представляет собой предел отношения удлинения А и к первоначальной длине Ах при стремлении последней к нулю:

Проинтегрировав это соотношение в пределах от 0 до х, получим формулу для определения осевого перемещения произвольного сечения:

Обозначив в начальном сечении х = 0 и(0) = и0, получим, что постоянная интегрирования С равна и0. В результате имеем

Учитывая, что на основании (3.6) и (3.5) линейная деформация равна

получим следующую формулу:

Величина ЕЕ называется жесткостью стержня при растяжении и сжатии.

Формула (3.11) позволяет установить характер изменения и(х). Для частного случая, когда жесткость EF и продольная сила N являются постоянными величинами, осевые перемещения изменяются по линейному закону:

На участке, где EF = const, а N является линейной функцией, осевые перемещения изменяются по закону квадратной параболы.

Если начальное сечение х = 0 закреплено, то и0 = 0. Из соотношения (3.10) следует, что в сечении, где е равно нулю (N = 0), и(х) может иметь экстремум.

Удлинение или укорочение стержня длиной / (см. рис. 3.7) равно разности осевых перемещений его концов х = 0 и х = /: А/ = и([)и(). Согласно формуле (3.11) получим

Для частного случая ЕЕ = const и N = const получим

Для стержня с постоянной жесткостью ЕЕ и линейным законом изменения продольной силы N при определении Д/ удобно использовать геометрический смысл определенного интеграла и привести формулу (3.12) к следующему виду:

где Qn — площадь эпюры N на участке от 0 до /.

Пример 3.2. Для стержня ступенчато-постоянного сечения (рис. 3.12, а) построим эпюры N, о и и. В расчетах примем Е= 1 • 105 МПа.

Рис. 3.12

В данном примере вычисление значений N но производим в характерных сечениях, начиная со свободного конца. При этом мысленно отбрасывается часть стержня, содержащая закрепленное сечение.

Участок 0,8

Сечение х = 2 м, N = 0, о = 0.

Сечение х = 0,8 м, N = 20 • 1,2 = 24 кН (растяжение),

о = = 1,2 кН/см2 = -12 МПа.

Участок 0

Сечение х = 0,8 м, N= 24 — 40 = —16 кН (сжатие), о = —у = -2 кН/см2 = -20 МПа.

Сечение x =0, N — — 16 кН, о = —20 МПа.

Опорная реакция в месте закрепления равна R = 16 кН. Ее направление показано на рис. 3.12, а.

В соответствии с соотношением (3.1) продольная сила и нормальные напряжения в пределах первого участка являются постоянными по величине, а в пределах второго участка изменяются по линейному закону. Эпюры N и с приведены на рис. 3.12, б, в.

Определим величины удлинений (укорочений) участков стержня:

Величина А/ всего стержня равна

В целом стержень укорачивается. Определим величины осевых перемещений характерных сечений:

Все сечения перемещаются в отрицательном направлении оси Ох. В пределах первого участка и(х) изменяется по линейному закону, а в пределах второго участка — по закону квадратной параболы. В сечении вблизи свободного конца касательная к эпюре и параллельна оси стержня, поскольку в этом сечении N= 0. Эпюра и приведена на рис. 3.12, г.

Пример 3.3. Для стержневой системы, состоящей из жесткой балки АВ, поддерживаемой тремя стальными стержнями указанного сечения (рис. 3.13), определим усилия и напряжения в стержнях и величины их удлинений. В расчетах примем Е= 2,1 • 105 МПа.

Для определения усилий Nx, N2 и N3 в стержнях системы используем три уравнения равновесия:

Рис. 3.13

Все три стержня испытывают растяжение. Определим напряжения в стержнях и величины их удлинений.

Стержни CD и DE (_||_63х63х4)

где /j = /2 = V22 + 22 = 2,83 м и /3 = 2 м — длины стержней.

Источник

Деформации продольные и поперечные. Коэффициент поперечной деформации (коэффициент Пуассона). Закон Гука. Модуль упругости.

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl, которая называется абсолютным удлинением,и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией. В данном случае относительная деформация называется продольной деформацией, а — относительной поперечной деформацией. Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона: (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

Читайте также:  Длительная прочность при растяжении

, (3.2)

где Е — коэффициент пропорциональности, называемый модулем нормальной упругости.

Если мы в формулу закона Гука подставим выражение и , тo получим формулу для определения удлинения или укорочения при растяжении и сжатии:

, (3.3)

где произведение ЕF называется жесткостью при растяжении, сжатии.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела(материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

{displaystyle E {stackrel {text{def}}{=}} {frac {dsigma }{dvarepsilon }}}

где:

· E — модуль упругости;

· {displaystyle sigma } — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы);

· {displaystyle varepsilon } — упругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру).

Определение осевых перемещений поперечных сечений. Жесткость при растяжении и сжатии.

Растяжениемилисжатиемназывают такой вид деформации бруса (стержня), при котором в его поперечных сечениях возникает только продольная сила N.

Продольной силойв поперечном сечении бруса называется равнодействующая внутренних нормальных сил , возникающих в этом сечении.

При сжатии сравнительно длинного и тонкого бруса прямолинейная форма его равновесия может оказаться неустойчивой.

жесткость сечения бруса при растяжении (сжатии) — Произведение модуля продольной упругости иплощади поперечного сечения. Характеризует жесткость бруса при растяжении (сжатии).

3. Диаграммы растяжения и ее характерные параметры: пределы пропорциональности, упругости, текучести, прочности. Истинная диаграмма растяжения.

Диаграмма растяжения

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

Диаграмму ~ условно делят на четыре области:

Iзона упругости. Здесь материал подчиняется закону Гука.

IIзона общей текучести. Здесь происходит существенное удлинение образца без заметного увеличения нагрузки. Кривая АВ называется площадкой текучести.

IIIзона упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более медленным, чем на упругом участке.

Процесс предварительного деформирования называют наклепом.

IVзона местной текучести (зона разрушения). Здесь начинает появляться место сужения – шейка.

На диаграмме растяжения отмечают характерные напряжения:

предел пропорциональности – напряжение, до которого выполняется закон Гука;

предел упругости – наибольшее напряжение, до которого материал не получает остаточной деформации;

предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

предел прочности – отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения.

Дата добавления: 2018-10-15; просмотров: 2824 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2021 lektsii.org — Контакты — Последнее добавление

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Читайте также:  При растяжении связок и мышц во время занятий физическими упражнениями

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Читайте также:  Растяжение грушевидной мышцы симптомы

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Напряжения и деформации. Коэффициент Пуассона. Закон Гука

Осевое растяжение (рис. 2.1, а) и сжатие (рис. 2.1, б) возникают под действием сил, направленных вдоль оси бруса (стержня). При растяжении (сжатии) в поперечном сечении бруса возникает только одно внутреннее усилие — продольная сила N. На растяжение (сжатие) работают канаты, стержни ферм и т.п. Растяжение (сжатие) могут вызвать сосредоточенные силы и продольная распределенная нагрузка (рис. 2.2). Здесь q — интенсивность продольной распределенной нагрузки, сила, приходящаяся на единицу длины, Н/м, кН/м.

Рис. 2.1. Осевое растяжение (а) и сжатие (б)

Рис. 2.2. Элемент, работающий на растяжение

Изобразим стержень, который подвергается центральному растяжению (рис. 2.3). Для определения внутренних сил применим метод сечений. В произвольном сечении стержня покажем внутренние усилия, которые при данном виде нагружения будут совпадать с направлением нормальных напряжений.

Рис. 2.3. Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б): / — исходное состояние; 2 — деформационное состояние

Равнодействующая внутренних усилий будет состоять только из продольной составляющей:

Она будет приложена в центре тяжести сечения стержня, который совпадает с продольной осью.

При расчетах по методу сечений будем всегда продольную силу направлять наружу. Если N > 0, то она направлена верно, а если получается, что jV

Составим уравнение равновесия отсеченной части:

Из гипотезы плоских сечений, высказанной голландским ученым Д. Бернулли, следует, что в пределах действия закона Гука плоские поперечные сечения стержня смещаются при растяжении параллельно начальным положениям, оставаясь плоскими (рис. 2.3, б). Это возможно лишь в случае, если нормальные напряжения во всех точках сечения одинаковы, т.е. О = const. Отсюда следует:

Под действием осевых растягивающих сил стержень постоянного сечения площадью А удлиняется на величину

где /j и /0 — длины стержня в деформированном и начальном состояниях;

А/ — абсолютное или полное удлинение.

Относительное удлинение

При растяжении и сжатии возникает также и поперечная деформация стержня

где и а ширина стержня в деформированном и первоначальном состояниях; А а — абсолютная поперечная деформация.

Относительная поперечная деформация

Знак (-) показывает, что при растяжении поперечные размеры стержня уменьшаются.

Коэффициент Пуассона. Отношение поперечной деформации к продольной при растяжении (сжатии), взятое по абсолютной величине, называют коэффициентом Пуассона:

Значение V для всех материалов находится в пределах 0

Закон Гука. Для подавляющего большинства конструкционных материалов с достаточной для практики точностью можно считать, что в известных пределах нагружения между продольной деформацией и соответствующим (действующим в ее направлении) нормальным напряжением существует пропорциональная (линейная) зависимость. Эта зависимость носит название закона Гука и записывается в виде

где Е — коэффициент пропорциональности, именуемый модулем упругости первого рода (модуль Юнга).

По физическому смыслу модуль упругости — напряжение, которое вызывает деформацию ? = 1 (удлинение стержня, равное первоначальной длине).

Для статей по данным экспериментов Е = (2…2,2)105 МПа для ста-

N А/

леи. Учитывая, что О = —, ? = —, закон Гука для растянутого стержня можно записать

где X] =— — коэффициент податливости стержня, показывающий уд-

is • А

линение (укорочение) стержня, вызываемое растягивающей силой F= 1 Н.

Произведение ЕА называют жесткостью сечения стержня при растяжении (сжатии). Для стержней переменного (ступенчатого) сечения удлинения определяют по участкам (ступеням) и результаты суммируют алгебраически:

где i — номер участка (i = 1, 2,…,«).

При расчете упругих перемещений стержня от нескольких сил часто применяют принцип независимости действия сил: перемещение стержня от действия группы сил может быть получено как сумма перемещений от действия каждой силы в отдельности.

Пример 2.1. Определить полное удлинение стержня (рис. 2.4).

Решение

Рис. 2.4. Определение внутренних сил и построение их эпюры

Определим с помощью метода сечений значения продольной силы на каждом участке. Для этого сделаем три сечения. Рассмотрим равновесие отсеченных частей:

Изобразим графически распределение продольных сил по длине стержня. График изменения продольных сил по длине стержня называется эпюрой. Каждая ордината эпюры равна значению N в данном сечении. Эпюру строят на линии, проведенной параллельно оси стержня. Подставив найденные значения N, N2, N3 в формулу, определим общее удлинение стержня

Пример 2.2. Определить величину напряжения О. возникающего в поперечном сечении, абсолютное удлинение Д/ и относительное укорочение ? стального стержня диаметром d = 40 мм, длиной / = 1,5 м, растягиваемого силой F = 100 кН, если Е = 2,1 • 105 Н/мм2 (рис. 2.5).

Рис. 2.5. К примеру 2.2

Решение

Площадь сечения
Напряжение

Абсолютное удлинение
Относительное удлинение

Пример 2.3. Стальная штанга длиной / = 8 м и площадью сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение А/ = 5,7 мм. Определить величину нагрузки F и напряжения G, если известно, что модуль упругости материала тяги Е = 2,МО5 МПа (рис. 2.6).

Решение

Относительное удлинение
Величина напряжения

Величина нагрузки

Рис. 2.6. К примеру 2.3

Источник