Относительное удлинение при растяжении формула

Относительное удлинение при растяжении формула thumbnail

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ
ИНСТИТУТ
СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

им. В.А. КУЧЕРЕНКО ГОССТРОЯ СССР

РЕКОМЕНДАЦИИ
ПО МЕТОДИКЕ ОПРЕДЕЛЕНИЯ
ОТНОСИТЕЛЬНОГО РАВНОМЕРНОГО
УДЛИНЕНИЯ СТРОИТЕЛЬНЫХ
СТАЛЕЙ ПРИ ИСПЫТАНИИ
НА РАСТЯЖЕНИЕ

Утверждены директором ЦНИИСК
им
. В.А.
Кучеренко
27
апреля 1979 г.

МОСКВА — 1980

Рекомендации распространяются
на стальной
прокат для строительных металлических
конструкций и устанавливают методы определения относительного равномерного
удлинения как характеристики, нормируемой
техническими условиями, так и необходимой при
проведении научно-исследовательских работ.

Рекомендации предназначены
для инженерно-технических работников заводских
лабораторий (заводов строительных металлоконструкций)
и научно-исследовательских организаций.

Рис. 2.

СОДЕРЖАНИЕ

При работе стали в
конструкциях характеристика относительного равномерного удлинения играет важную роль для
оценки способности металла пластически деформироваться. Эта характеристика
имеет большее значение, чем нормируемое в настоящее время полное относительное
удлинение согласно ГОСТ 1497-73. До настоящего времени для определения равномерного
относительного удлинения в основном использовалась методика, описанная в
стандарте на арматурные стали, где не предусмотрены плоские образцы.

Настоящее руководство
распространяется на стальной толстолистовой, широкополосный универсальный и
фасонный (уголок, швеллер, балка) прокат толщиной от 4 до 40 мм, независимо от
его прочностных свойств, предназначенный для изготовления
строительных металлических конструкций, и
устанавливает методы определения относительного равномерного удлинения при
статических испытаниях
на растяжение при нормальных температурах Относительное удлинение при растяжении формула.

Применение методов
определения относительного равномерного удлинения предусматривается в
стандартах и технических условиях на соответствующие виды проката,
предназначенного для строительных металлических конструкций.

Термины и определения,
принятые в настоящих рекомендациях, согласованы с ГОСТ 1497-73 «Металлы. Методы испытания на растяжение».

Относительное равномерное
удлинение определяется одновременно с относительным удлинением после разрыва.

Настоящие рекомендации
разработаны Отделением прочности и новых форм металлических конструкций и
Отделением испытаний конструкций ЦНИИСК им. Кучеренко Госстроя СССР (составили кандидаты
технических наук Потапов В.Н. и Жулев Ю.К.) на
основании материалов исследований, выполненных
в период 1976-78 гг.

Дирекция ЦНИИСК
им. Кучеренко

1.1. При испытании на
растяжение по определению относительного равномерного удлинения принимаются
следующие обозначения и определения:

l — рабочая длина в мм — часть образца с постоянной площадью поперечного сечения между его
головкой или участком для захвата;

l0 — начальная расчетная длина образца в мм, на которой
определяется удлинение после разрыва;

lпр — начальная расчетная длина участка образца в мм, на которой
определяется равномерное удлинение;

lкр — конечная расчетная длина участка образца в мм, не
включающая место разрыва;

lт — установочная база измерителя деформаций в мм;

d0 — начальный диаметр рабочей части цилиндрического образца до
разрыва в мм;

F0 — начальная площадь поперечного сечения рабочей части образца в мм2;

Fкр — конечная площадь поперечного сечения рабочей части образца после
разрыва, определяемая в расчетной части равномерного
относительного удлинения в мм2.

1.2. Характеристики
механических свойств, получаемых при испытании на растяжение, имеют следующие
обозначения и определения:

δр — относительное равномерное удлинение после разрыва в % — отношение приращения расчетной длины образца (lкр — lнр) на участке, не
включающем место разрыва, к соответствующей первоначальной длине lнр;

ψp — относительное равномерное сужение в % — отношение изменения
площади поперечного сечения образца (F0 — Fкр) после разрыва на участке, не включающем место разрыва, к начальной площади поперечного сечения;

Pвр — максимальная осевая растягивающая нагрузка в кГс, действующая
на образец до образования шейки.

2.1. Для определения
относительного равномерного удлинения при испытании на растяжение применяют
пропорциональные плоские образцы типов I и II с начальной расчетной длиной Относительное удлинение при растяжении формула а также пропорциональные цилиндрические образцы типов I — VII
с l0 = 10d0 по ГОСТ 1497-73.

2.2. Рабочая длина плоского
образца должна составлять

Относительное удлинение при растяжении формула

2.3. При испытании
толстолистового широкополосного и уголкового проката применяют, как правило, плоские образцы. При
испытании швеллерного и двутаврового проката применяют, в основном,
цилиндрические образцы; допускается применение плоских образцов с одной прокатной и другой
обработанной поверхностями.

Плоские образцы должны сохранять
поверхностные слои проката. При толщине проката свыше 25 мм:

— испытания проводят на
плоских образцах толщиной 25 мм с одной прокатной поверхностью;

— допускается применять
плоские образцы
с обеими прокатными поверхностями, принимая при этом ширину образца не менее 50
мм и расчетную длину Относительное удлинение при растяжении формула.

2.4. Измерение начальной и
конечной расчетных длин, размеров поперечного
сечения образца производят с точностью до 0,1 мм.

2.5. На рабочей части образца
рекомендуется наносить разметку — неглубокие керны, риски или иные метки через каждые 5 или
10 мм.

3.1. Для испытаний применяют
разрывные и универсальные машины всех систем, если они соответствуют
требованиям ГОСТ 1497-73, ГОСТ 7855-74
и требованиям
стандартов на стали для строительных металлических конструкций.

3.2. При проведении испытаний
должны соблюдаться следующие основные условия:

а) надежное центрирование
образца в захватах испытательной машины;

б) плавность нагружения;

в) скорость перемещения активного захвата при
испытании до предела текучести долина быть не
более 0,01, за пределом текучести не более 0,2 длины расчетной части образца,
выраженной в мм/мин.

Читайте также:  Растяжение спины с валиком

4.1. При текущих испытаниях
определение относительного равномерного
удлинения может производиться по одному из
следующих методов:

Первый метод

Относительное равномерное
удлинение δр определяют вне участка разрыва (предпочтительней на
большей части разрушенного образца) на начальной расчетной длине, равной 50 мм.

При этом расстояние от места разрыва до
ближайшей точки (риски) начальной расчетной
длины lпр должно быть не менее 3b0*) (с округлением до ближайшей удаленной
разметочной риски от места разрыва образца где
b0 — начальная ширина образца (рис. 1).

______________

*)
В случае цилиндрических образцов вместо b0 следует d0.

Относительное удлинение при растяжении формула

Рис. 1

Относительное равномерное
удлинение δр в процентах вычисляют по формуле

Относительное удлинение при растяжении формула

Второй метод

Относительное равномерное
удлинение δр в % вычисляют по следующей формуле

Относительное удлинение при растяжении формула

где ψр — относительное равномерное сужение в %, вычисленное по формуле

Относительное удлинение при растяжении формула

Измерение площади Fкр производится на расстоянии от места
разрыва не менее 4b0.

Третий метод*)

______________

*) Этот метод
допускает использование образцов с пятикратной расчетной длиной.

Относительное равномерное
удлинение δр определяют графически по диаграмме растяжения (рис. 2), записываемой соответствующим измерителем деформаций, установленным непосредственно на
образце.

Масштаб по оси деформаций
должен быть не менее 50:1.

Примечание. Определение δр производится на
участке диаграммы растяжения, заканчивающемся точкой В, которая соответствует
началу достижения максимальной нагрузки Рвр.

Относительное удлинение при растяжении формула

Рис. 2

4.2. Относительное
равномерное удлинение вычисляют с округлением до 0,5 %. При этом доли до 0,25 %
отбрасывают, а доли в 0,25 % и более принимают за 0,5 % (см. приложение).

4.3. Испытание считается
недействительным:

— при разрыве
образца по кернам (рискам), если при этом какая-либо
характеристика механических свойств по своей величине не отвечает установленным требованиям;

— при разрыве
образца в захватах испытательной машины или за пределами расчетной длины;

— при обнаружении ошибок в
проведении испытаний или записи результатов
испытаний.

В указанных случаях испытание
на растяжение должно быть повторено на отобранных от той же партии или плавки
новых образцах.

По первому методу (рис. 1)

Начальная расчетная длина lнр = 50
мм;

Конечная расчетная длина  lкр = 58,4 мм,

Относительное удлинение при растяжении формула

По второму методу

Начальная площадь поперечного сечения
(10×30 мм) образца F0 = 300 мм2.

Конечная площадь поперечного
сечения образца (замеренная на расстоянии 4b0 от места разрыва) Fкр = 258 мм2

Относительное удлинение при растяжении формула

Относительное удлинение при растяжении формула

Источник

Сопротивление материалов

Деформации при растяжении и сжатии



Продольные деформации при растяжении и сжатии

Характер деформаций, которым подвергается прямой брус при растяжении или сжатии мы определили, проведя опыт с резиновым брусом, на котором была нанесена сетка линий.
Теперь представим себе брус постоянного сечения имеющий длину l, один из концов которого защемлен, а к свободному концу приложена растягивающая сила F. Под действием этой силы брус удлинится на некоторую величину Δl, которую назовем абсолютным удлинением бруса.
Отношение абсолютного удлинения Δl к первоначальной длине бруса l назовем относительным удлинением и обозначим ε:

ε = Δl / l

Относительное удлинение – величина безразмерная, иногда его выражают в процентах.

Итак, деформация бруса при растяжении и сжатии характеризуется абсолютным и относительным удлинением или укорочением.

***

Закон Гука при растяжении и сжатии

Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Математически эта зависимость записывается так:

σ = E ε.

Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).

Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00…1,30) х 105 МПа и т. д.

Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:

Δl = Nl / (EА).

Произведение модуля упругости на площадь сечения Е×А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.

Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение ЕА / l называют жесткостью бруса при растяжении и сжатии.

Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:

Читайте также:  Как правильно делать растяжение позвоночника

Δl = Σ (Δli)

***



Поперечные деформации при растяжении и сжатии

Описанный ранее опыт с резиновым брусом, на котором нанесена сетка линий, показал, что при растяжении поперечные размеры бруса уменьшаются, а при сжатии – увеличиваются, т. е. брус становится либо тоньше, либо толще. Это явление характерно для брусьев, изготовленных из всех материалов.
Опытным путем установлено, что при одноосном растяжении или сжатии отношение относительных поперечной и продольной деформаций для данного материала – величина постоянная.

Впервые на эту зависимость указал французский ученый С. Пуассон (1781-1840 г.г.) и математически она записывается так:

|ε1| = ν |ε|,

где ν – коэффициент поперечной деформации, называемый коэффициентом Пуассона.

Коэффициент Пуассона является безразмерной величиной, и характеризует упругие свойства материала. При растяжении и сжатии этот коэффициент принимается одинаковым.
Значения коэффициента Пуассона для разных материалов установлены опытным путем и их величины можно найти в соответствующих справочниках.

деформации при растяжении и сжатии

***

Потенциальная энергия деформации при растяжении

При статическом (медленном) растяжении образца растягивающая сила F возрастает от нуля до какого-то значения, удлиняет образец на величину Δl и при этом совершает работу W.
Эта работа аккумулируется в деформируемом образце в виде потенциальной энергии деформации U, причем, пренебрегая незначительными потерями энергии (например, тепловыми), можно считать, что W = U.

Путем изучения диаграмм растяжения образцов, установлено, что потенциальная энергия упругой деформации стержня длиной l постоянного поперечного сечения А при одинаковой во всех сечениях продольной силе N = F будет равна:

U = W = F Δl / 2 = N2 l / (2E А)

Сопротивление материалов оперирует, также, таким понятием, как удельная потенциальная энергия деформации, которая подсчитывается, как потенциальная энергия, приходящаяся на единицу объема бруса.

При одновременном действии растягивающих и сжимающих нагрузок или ступенчатом изменении размеров поперечного сечения бруса, его разбивают на однородные участки и для каждого подсчитывают потенциальную энергию деформации. Потенциальную энергию деформации всего бруса определяют, как сумму потенциальных энергий отдельных участков.

Анализируя формулу потенциальной энергии деформации можно сделать вывод, что эта величина всегда положительная, поскольку в ее выражения входят квадраты линейных и силовых величин. По этой причине при вычислении потенциальной энергии деформации нельзя применять принцип независимости действия сил (поскольку квадрат суммы не равен сумме квадратов слагаемых).
Единицей измерения потенциальной энергии деформации, как и работы, является джоуль (Дж).

***

Материалы раздела «Растяжение и сжатие»:

  • Основные понятия о деформации растяжения и сжатия.
  • Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.

Смятие



Правильные ответы на вопросы Теста № 5

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

3

3

1

2

1

3

2

2

1

1

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Читайте также:  Дешевая мазь при растяжении

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Относительное удлинение при растяжении формула

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник